

SOFTWARE ARCHITECTURES AND PATTERNS FOR PERSISTENCE IN

HETEROGENEOUS DATA-INTENSIVE SYSTEMS

by

AARON SCHRAM

B.S., University of Colorado at Boulder, 2006

M.S., University of Colorado at Boulder, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

Department of Computer Science

2015

This thesis entitled:
Software Architectures and Patterns for Persistence in

Heterogeneous Data-Intensive Systems
written by Aaron Schram

has been approved for the Department of Computer Science

Professor Kenneth M. Anderson, Chair

Professor Richard Han

Professor James Martin

Professor Nenad Medvidovic

Professor Judith Stafford

Date___________

The final copy of this thesis has been examined by the signatories, and we

find that both the content and the form meet acceptable presentation standards of
scholarly work in the above mentioned discipline.

 iii

ABSTRACT

Schram, Aaron (Ph.D., Computer Science)

Software Architectures and Patterns for Persistence in Heterogeneous Data-

Intensive Systems

Thesis directed by Associate Professor Kenneth M. Anderson

Software engineers are faced with a variety of difficult choices when selecting

appropriate technologies on which to base a software system. As the typical

software user has become accustomed to systems being “on-demand” and “always-

available,” the software engineer is more concerned than ever before about the

issues of system scalability, availability, and durability. In the absence of expertise

in distributed systems, architectural decisions become complex, slowing feature

development and introducing error. Software engineering is in need of robust

patterns and tools that increase the accessibility of specialized technologies

developed for the completion of specialized tasks. This dissertation describes my

existing work related to the challenges of domain modeling and data-access in large-

scale, heterogeneous data-intensive systems and extends this work to include novel

architectures for utilizing multiple large-scale data stores effectively. This research

focuses on increasing the accessibility and flexibility of these data stores, which

typically afford scalability, availability, and durability at the cost of added

complexity for the application developer. The resulting architecture and associated

implementation alleviates common challenges faced by small and medium software

enterprises during the development of heterogeneous data-intensive software

applications.

DEDICATION

To

my parents and grandparents

who I will always admire for their

struggles, sacrifices, and hard work

 v

ACKNOWLEDGEMENTS

I would like to thank my colleagues in the various software engineering

organizations that I have been a part of throughout my career for the valuable

experience and lessons taken from each. Specifically I would like to thank Nate

Sammons, William Butler, and Burke Webster for their continued support and

friendship through this and many other shared experiences. This dissertation

would not have been possible without the positive and long lasting relationship with

my advisor, Dr. Kenneth M. Anderson, which began so many years ago when I was

an optimistic and overly curious undergraduate. Thank you for guiding me on a

journey only you saw I needed to take. Finally, I would like to thank my incredibly

supportive network of friends and colleagues for, among many other things,

ensuring I enjoy the moment.

 vi

CONTENTS

CHAPTER 1: INTRODUCTION .. 1	

CHAPTER 2: LARGE-SCALE DATA STORES .. 10	

2.1	
 DATA STORE TECHNOLOGY OVERVIEW ... 11	

2.1.1	
 Relational ... 12	

2.1.2	
 Columnar ... 14	

2.1.3	
 Key-Value ... 15	

2.1.4	
 Document ... 17	

2.1.5	
 Network .. 19	

CHAPTER 3: TOWARDS N DATA STORE ARCHITECTURES 21	

3.1	
 CHALLENGES FOR SOFTWARE ENGINEERING ... 21	

3.2	
 OPPORTUNITIES FOR SOFTWARE ENGINEERING ... 26	

CHAPTER 4: RELATED WORK ... 28	

CHAPTER 5: EVOLUTION OF THE PERSISTENCE TIER 35	

5.1	
 TRADITIONAL ENTERPRISE ARCHITECTURE ... 37	

5.2	
 TRADITIONAL MULTI-DATA STORE APPROACH ... 39	

5.3	
 TRADITIONAL PERSISTENCE ARCHITECTURE DESIGN CONSTRAINTS 41	

CHAPTER 6: THE DIAMOND ARCHITECTURE ... 45	

6.1	
 OVERVIEW ... 45	

6.2	
 APPROACH ... 46	

6.3	
 DIAMOND ARCHITECTURAL COMPONENTS ... 49	

 vii

6.3.1	
 Command ... 49	

6.3.2	
 Runner ... 51	

6.3.3	
 Data Model Converter ... 52	

6.3.4	
 Reconciler ... 56	

6.3.5	
 Pipeline .. 57	

6.3.6	
 RepositoryFacade (Optional) .. 60	

6.3.7	
 Final Architecture ... 61	

CHAPTER 7: IMPLEMENTATION: THE MACHINIST FRAMEWORK 64	

7.1	
 THE MACHINIST FRAMEWORK .. 64	

7.1.1	
 Command ... 65	

7.1.2	
 Runner ... 73	

7.1.3	
 Reconciler ... 75	

7.1.4	
 Pipeline .. 75	

7.1.5	
 Decorators .. 83	

CHAPTER 8: MBOX: A MULTI-DATA STORE INBOX .. 87	

8.1	
 OVERVIEW ... 87	

8.2	
 DESIGN AND ARCHITECTURE ... 89	

8.2.1	
 Data Model ... 91	

8.2.2	
 Persist .. 92	

8.2.3	
 Save .. 93	

8.2.4	
 Find By User .. 99	

8.2.5	
 Search ... 102	

8.2.6	
 Decorators .. 104	

CHAPTER 9: EVALUATION ... 106	

 viii

9.1	
 OVERVIEW ... 106	

9.2	
 APPROACH ... 107	

9.3	
 ASSUMPTIONS .. 107	

9.4	
 EVALUATION SCENARIOS .. 109	

9.4.1	
 Additional Data Store ... 109	

9.4.2	
 Persist Data to Additional Store ... 113	

9.4.3	
 Retrieve Data from Additional Store .. 117	

9.4.4	
 Split Data Model Across Data Stores ... 119	

9.4.5	
 Per Data Store Data Model Attributes ... 121	

9.4.6	
 Concurrent Persistence ... 123	

9.4.7	
 Tiered Persistence ... 124	

9.4.8	
 Retrieve Fastest Available .. 126	

9.4.9	
 Enable or Disable Data Store ... 127	

9.4.10	
 Results Reconciliation ... 128	

9.5	
 QUANTITATIVE FEATURES OF THE EVALUATION .. 129	

9.6	
 EVIDENCE OF USEFULNESS FOR DATA STORE EXPERIMENTATION 131	

9.7	
 RESULTS .. 133	

CHAPTER 10: FUTURE WORK .. 137	

CHAPTER 11: CONCLUSIONS .. 140	

REFERENCES .. 141	

APPENDIX A – MBOX PERSISTENCE IMPLEMENTATIONS 148	

APPENDIX B - MACHINIST CLASS DIAGRAM .. 151	

 ix

TABLES

TABLE 2-1. POPULAR CLASSES OF LARGE-SCALE DATA STORES. 12

TABLE 5-1. COLLECTION BASED REPRESENTATIONS OF DATA STORE DATA MODELS. 43

TABLE 9-1. LINE OF CODE COUNTS FOR TRADITIONAL (LEFT) VS. DIAMOND (RIGHT)

EMAILSERVICE IMPLEMENTATIONS UTILIZING FOUR DATA STORES. 130

TABLE 9-2. TOTAL LINE OF CODE DISPARITY BETWEEN THE TRADITIONAL AND DIAMOND

ARCHITECTURAL APPROACHES. ... 131

	

	
 	

 x

FIGURES

FIGURE 5-1. APPLICATION FUNCTIONS WITH ASSOCIATED TECHNOLOGY TRADE-OFFS. .. 35

FIGURE 5-2. ADAPTED FROM THE REPOSITORY PATTERN AS DESCRIBED BY FOWLER 38

FIGURE 5-3. A TRADITIONAL HOMOGENEOUS ENTERPRISE ARCHITECTURE. 39

FIGURE 5-4. AD-HOC POLYGLOT PERSISTENCE. .. 40

FIGURE 6-1. REPOSITORY PER DOMAIN OBJECT PER DATA STORE ARCHITECTURE. 48

FIGURE 6-2. COMMAND PATTERN [50]. ... 49

FIGURE 6-3. CONVENTIONAL COMMAND INTERFACE. .. 50

FIGURE 6-4. DIAMOND COMMAND INTERFACE. .. 50

FIGURE 6-5. THE RUNNER INTERFACE. .. 52

FIGURE 6-6. THE GOOGLE GUAVA CONVERTER INTERFACE. .. 53

FIGURE 6-7. AN EXAMPLE DATA MODEL CONVERSION. ... 54

FIGURE 6-8. THE RECONCILER INTERFACE. ... 56

FIGURE 6-9. THE PIPELINE INTERFACE. ... 58

FIGURE 6-10. THE DIAMONDPIPELINE. ... 59

FIGURE 6-11. DIAMONDPIPELINE WITH REPOSITORYFACADE. 60

FIGURE 6-12. THE DIAMOND ARCHITECTURE. .. 62

FIGURE 6-13. DIAMOND ARCHITECTURE SEQUENCE DIAGRAM. 63

FIGURE 7-1. THE SAVECOMMAND CLASS DIAGRAM. ... 66

FIGURE 7-2. THE MACHINIST FRAMEWORK SAVECOMMAND IMPLEMENTATION. 66

FIGURE 7-3. THE FINDCOMMAND CLASS DIAGRAM. ... 68

 xi

FIGURE 7-4. THE MACHINIST FRAMEWORK FINDCOMMAND IMPLEMENTATION. 69

FIGURE 7-5. THE DELETECOMMAND CLASS DIAGRAM. ... 70

FIGURE 7-6. THE MACHINIST FRAMEWORK DELETECOMMAND IMPLEMENTATION. 71

FIGURE 7-7. THE MACHINIST FRAMEWORK SAVEALLCOMMAND IMPLEMENTATION. 72

FIGURE 7-8. THE MACHINIST FRAMEWORK FINDALLCOMMAND IMPLEMENTATION. 73

FIGURE 7-9. MACHINIST FRAMEWORK RUNNER IMPLEMENTATIONS. 74

FIGURE 7-10. THE FIRSTNOTNULLRESULTRECONCILER CLASS DIAGRAM. 75

FIGURE 7-11. THE MACHINIST PIPELINE CLASS STRUCTURE. .. 77

FIGURE 7-12. THE MACHINIST FRAMEWORK DIAMONDPIPELINE CLASS STRUCTURE. 78

FIGURE 7-13. THE CONSECUTIVEPIPELINE AND SIMPLEPIPELINE CLASS DIAGRAM. 79

FIGURE 7-14. THE CONCURRENTPIPELINE CLASS DIAGRAM. ... 80

FIGURE 7-15. THE FLASHPIPELINE CLASS DIAGRAM. ... 81

FIGURE 7-16. THE TIEREDPIPELINE AND SIMPLETIEREDPIPELINE CLASS STRUCTURE. 82

FIGURE 7-17. THE DECORATOR PATTERN. ... 84

FIGURE 7-18. THE SOURCECOMMANDDECORATOR CLASS DIAGRAM. 85

FIGURE 7-19. THE TIMECOMMANDDECORATOR CLASS DIAGRAM. 86

FIGURE 8-1. THE MBOX APPLICATION. .. 88

FIGURE 8-2. THE MBOX ARCHITECTURE UTILIZING FOUR DISPARATE DATA STORES. 90

FIGURE 8-3. THE MBOX DATA MODEL. ... 91

FIGURE 8-4. THE EMAILSERVICE AND EMAILREPOSITORYFACADE DEFINITIONS. 93

FIGURE 8-5. THE SET OF EMAIL REPOSITORIES WITH DIVERSE METHOD DEFINITIONS. .. 93

FIGURE 8-6. THE SAVE EMAIL ARCHITECTURE. .. 94

 xii

FIGURE 8-7. THE EMAILKEYVALUECONVERTER IMPLEMENTATION OF THE MBOX

APPLICATION. .. 96

FIGURE 8-8. THE EMAILDOCUMENTCONVERTER IMPLEMENTATION OF THE MBOX

APPLICATION. .. 97

FIGURE 8-9. THE CONFIGURATION OF THE MBOX EMAIL SAVE PIPELINE. 98

FIGURE 8-10. THE FIND ALL EMAILS FOR USER ARCHITECTURE. 100

FIGURE 8-11. THE CONFIGURATION OF THE MBOX FIND EMAILS BY USER PIPELINE. . 102

FIGURE 8-12. THE SEARCH EMAILS FOR USER ARCHITECTURE. 103

FIGURE 8-13. THE CONFIGURATION OF THE MBOX SEARCH PIPELINE. 103

FIGURE 8-14. THE MBOX APPLICATION COMMAND DECORATORS. 105

FIGURE 9-1. THE INITIAL EVALUATION SYSTEMS USING A DIAMOND ARCHITECTURE

(LEFT) AND A TRADITIONAL THREE-TIER ARCHITECTURE (RIGHT). 108

FIGURE 9-2. THREE-TIER ARCHITECTURE WITH TWO DATA STORES. 111

FIGURE 9-3. DIAMOND ARCHITECTURE WITH TWO DATA STORES. 113

FIGURE 9-4. TRADITIONAL ARCHITECTURE EMAILSERVICE SAVE METHOD FOR TWO DATA

STORES. .. 115

FIGURE 9-5. DIAMOND ARCHITECTURE EMAIL SAVE PIPELINE FOR TWO DATA STORES. 117

FIGURE 9-6. TRADITIONAL ARCHITECTURE SERVICE FIND METHOD FOR TWO DATA

STORES. .. 118

FIGURE 9-7. DIAMOND ARCHITECTURE FIND PIPELINE FOR TWO DATA STORES. 119

FIGURE 9-8. LOG OUTPUT OF MBOX APPLICATION. .. 132

 1

CHAPTER 1: Introduction

Big Data is a rapid increase in public awareness that data is a valuable
resource for discovering useful and sometimes potentially harmful knowledge.

- Stephen Few [1]

This dissertation concerns itself with research issues related to the task of

designing and implementing architectures capable of leveraging a variety of

purpose-built frameworks and systems. While significant progress has been made

in computer science research recently—specifically in the areas of large-scale

computing and data processing—software engineering researchers have struggled

to provide adequate and widely adopted abstractions for the construction of

heterogeneous systems that are rapidly becoming commonplace in small and

medium sized enterprises. Minimalizing the complexities encountered when

adopting purpose-built frameworks aids in the greater transition towards a

heterogeneous style of application architecture based upon numerous specialized

technologies.

This introduction details the conditions that influenced the creation of today’s

heterogeneous approach to application development by exploring the need for

further research in the design and application of patterns for large-scale systems of

systems. We present an overview of past advances in enterprise patterns and

technologies that have made contributions to the success of this research domain

and discuss remaining challenges.

 2

In the late 1990s, software companies began to experience massive consumer

adoption of their technologies. Desktop and laptop computers quickly became

ubiquitous in homes, schools, and offices. The Internet was also experiencing

adoption at a staggering rate with 50% of adults (18+) going online by the year 2000

[2]. The rapidly growing base of users operated under new software paradigms and

expectations compared to the expert users of the previous decades—expecting

software packages to be accessible via a web browser. The browser greatly

simplified the adoption of new software in a variety of ways for its users. The user

no longer needed to install software from physical media (floppy or compact disk)

thus, avoiding many complex failure cases associated with user-initiated software

installations on widely varying hardware. Additionally, the user need not worry

about backing up important information stored by the program: if the user’s system

experienced a hardware failure, the data was still safe with the application

provider. Applications could be accessed that were running on machines with much

more advanced hardware than the user owned, increasing performance while

lowering cost for the user. Finally, the software was always up-to-date, providing

the user with the latest in features and bug fixes without waiting for the next

version to be shipped.

As more and more users adopted Internet based applications, software

companies providing these applications experienced an incredible amount of

growth. The growth of these businesses forced software engineering teams to

innovate rapidly. Some of these efforts were conducted in well-funded research and

 3

development organizations, such as government labs and large corporations (e.g.,

IBM), while others took place within the stereotypical software “startup” (e.g.,

Google, Yahoo!). Software applications of this nature became know as “Software as

a Service” (SaaS) products. The name refers to the fact that software is delivered to

the user as an “on-demand” service without the need for physical installation media.

While this drastically decreased production costs for the business, it shifted many

critical responsibilities from the user to the vendor, specifically the software

engineering team. This also drastically reduced the software release cycle, which

allowed vendors to push updates for features and bug fixes more frequently.

A typical SaaS application is hosted in a data center and operated by the

same organization that develops the application. Current examples include Google

Gmail [3], Facebook [4], and other applications of similar nature where users access

the application via a remote client (e.g., web browser, mobile client) and the hosted

application manages all aspects of the user’s data. This style of application

deployment motivated and continues to motivate software engineering teams to

adopt multi-tenant architectures.

A multi-tenant architecture uses the same software and storage systems to

service requests from many different clients and store data from many different

users. A user from Company X will have their data stored in the same manner and

possibly on the same physical system as a user from Company Y. This is an

important architectural feature. Although it allows software engineers at the

application level to quickly and easily interact with data, regardless of the

 4

customer, it implies co-locating customers of extremely high and low use. A quality

of service problem, attributed to a customer of extremely high use, affects the

experience of other users.

As user- and machine-generated data volumes grew rapidly the bottlenecks of

existing storage systems were quickly exposed. It was common for applications to

be scaled “vertically”, meaning the application (deployed on a single host) would be

relocated to more capable hardware, providing improved processing, storage, and

memory. This was an expensive and often error-prone process. If scaling vertically

was not practical for an organization, the other option afforded to the organization

was to performance tune the application to run more efficiently on existing

hardware. Although this avoided the costs associated with purchasing new

hardware, scaling via this method was often a stopgap and as costly as new

hardware—if not more so—in additional engineering time. As more and more

systems reached the limits of what could be accomplished by scaling vertically or

performance tuning, software teams strove for a new approach.

Running a SaaS application on a single host introduces a variety of problems

that can have disastrous consequences for any business, small or large. A system

failure at the application or storage level can affect the user experience or result in

data loss—both of which are devastating problems when selling an “on-demand”

and “always available” service. Researchers and application developers were

motivated to create new systems which were “horizontally” scalable, available, and

durable. Focusing on these attributes allowed the SaaS vendor to offer a high

 5

quality and cost-effective product to users while containing the costs of hosting,

storage, and bandwidth.

Modern software systems are expected to be always available and, therefore,

require redundancy throughout the application and the ability to quickly adapt to

large increases in usage. For most applications this implies a distributed approach

to system architecture. Increasing system capacity through distribution is

described as scaling horizontally and is routinely accomplished by partitioning data

and processing capacity across multiple hosts. Successfully implementing these

strategies is extremely complex and requires expertise in distributed systems;

however, the benefits for a software organization are numerous. Users expect on-

demand products and providing them is now mandatory for even the smallest

software-based businesses, which requires these software businesses to engineer

their products to handle unavoidable situations, like hardware failures and extreme

usage, without incurring downtime.

To keep up with changing demands, software businesses must architect

systems that can scale efficiently without causing an interruption in service for

their customers. As a business experiences success, there is incredible pressure to

keep up with the largely unpredictable demand for their products or services. This

makes it necessary for systems to be able to scale effectively with little to no notice.

In traditional vertically-scalable systems, the software company orders better

hardware and software from a vendor and then slowly integrates the new

capabilities into their existing product. This approach impacts existing and new

 6

customers, as the software team is required to shift their focus from implementing

new features and customer requests to integrating new hardware and software. In

some cases, the updates require new design and logic for the persistence tier of the

application, which makes the persistence aspects of the application cumbersome to

scale. Many applications are forced to implement complex “sharding” algorithms

where the data is partitioned to accommodate future growth. This causes

organizations to buy more equipment than they need and utilize it inefficiently

unless the sharding algorithm is properly optimized. Undesired consequences of

improper data sharding are numerous but often occur due to pinning a client to a

single host that fails or becomes unresponsive due to high system load.

SaaS systems today make use of a variety of horizontally-scalable data

storage solutions. Many encourage adopters to take advantage of inexpensive, off-

the-shelf hardware that can be easily added to existing systems. In these systems,

determination of how to partition an ever-growing amount of data is left up to the

data storage system which transparently recognizes newly added hardware (i.e.,

servers) as additional resources, avoiding the need for expensive and customized

hardware solutions. Through this strategy, increasing the capabilities of a software

system to match business needs can be done incrementally and without incurring

downtime, which allows a software or operations team to scale an application

without diverting time away from feature development. With the advent of

Infrastructure as a Service (IaaS) or “Cloud Computing”, vendors like Amazon Web

 7

Services enable organizations to scale systems up or down as needed, paying for

only the processing and storage they use.

As the acquisition and maintenance of hardware continues to be

commoditized by the Cloud, software engineers are provided an ever-increasing set

of technologies on which to build their applications. These technologies are

produced and distributed by experts in distributed systems, and, although these

technologies are able to accommodate enormous growth in data, they are also

extremely complex. Data storage, as a field of study, is where the most innovative

approaches to scalability have been developed. Data is generated with staggering

velocity and variation, which makes it extremely difficult to persist into rigid

schemas. Applications making use of rigid specification languages such as XML,

SQL, and others have struggled to adapt to ever-changing data structures that are

generated by a diverse set of users and systems while gaining, modifying, and losing

attributes with every iteration.

What was needed was the ability to easily accept data from a variety of

sources without enforcing strict validation and binding logic. It became difficult to

use contract-driven transport and storage interfaces. The popularization of REST

[5] and JSON [6], [7] made communication between systems straightforward and

flexible, through the use of standardized conventions, built upon HTTP and nested

data structures. Additionally, key-value data structures became extremely

prevalent throughout the persistence tier of the application. Many popular large-

scale, open source storage systems use key-value pairs to achieve easily replicable

 8

and flexible schema-less data storage (e.g., Cassandra, Hadoop). These systems use

a unique key to identify an object of interest and store an entire object graph

representation (i.e., embedded object graph) as a value. This approach not only

allows an application to store an object in its current structure, regardless of the

defined storage schema, but it also allows for objects to be split and/or replicated

transparently among a cluster of machines, thus improving data availability and

application scalability. Avoiding costly, error-prone schema updates allows an

organization to adapt quickly to new challenges.

Software engineering, as a discipline, is increasingly at the center of the

majority of engineering research, within and outside of computer science. Even

beyond schools of engineering, it is common for research groups to incorporate a

variety of available and adaptable software tools to interpret the growing amount of

data being generated and captured in nearly every discipline. The most

straightforward and commonly used systems are now capable of activities that

would have been out of reach to all but the most well funded projects just a decade

ago. It has never been easier to develop and deploy a SaaS application. The

growing acceptance of Cloud based systems and web frameworks (e.g., Ruby on

Rails) has redefined the skillsets required to be a successful application developer.

Understanding the motivating factors that led to the development and

adoption of SaaS architectures is critical to the study of software engineering for

heterogeneous systems. With complex system attributes such as scalability,

availability, and durability required to meet user expectations, research is needed

 9

to understand and extract accessible patterns. Doing so will allow software

engineers to benefit from these technologies without requiring expertise in

distributed systems, which can overwhelm even the most experienced application

development teams. Organizations looking to manage the complexities associated

with these technologies are subdividing team members into specialized groups of

Software Configuration Management (SCM) engineers who manage the deployment

and maintenance of these systems. These teams refer to themselves as developer

operations (i.e., DevOps). Furthering software engineering research in this domain,

we work to minimize the complexities inherent in developing distributed systems,

offering an alternative to segmenting the engineering team in an effort to limit the

amount of valuable engineering hours required to build and deploy heterogeneous

systems—returning full focus to application development.

Indeed, in today’s SaaS architectures scalability, availability, and durability

are not “nice to haves” but instead, are basic requirements upon which the

foundation of an application is built. Better patterns and architectures in this area

of research will allow software engineers to return focus to abstractions specific to

their problem domain, without being overwhelmed by the complexities associated

with the implementation of specific distributed systems. In the next chapter, we will

discuss, in detail, the classes of data storage technologies available to the software

engineer and the complexities associated with the evolution from homogeneous to

heterogeneous SaaS architectures.

 10

CHAPTER 2: Large-Scale Data Stores

In this chapter, we present an introduction to large-scale heterogeneous

systems and the specialized frameworks used to construct them. We focus on

software as a service (SaaS) architectures as SaaS is the primary architecture used

by production web applications today. We will also discuss, in detail, examples of

the different types of specific tasks required by large-scale systems and the

frameworks commonly used to accomplish each. The conclusion of this chapter will

outline the challenges faced by an organization as they begin to design and

implement a system of this nature. Given a thorough review of these specialized

technologies, we will be well suited to recommend how each technology can be made

more accessible to the software engineering community.

The primary roles fulfilled by software applications involve capturing,

understanding, and presenting data. As data sets become too large to fit into

memory or on local disks, applications need to contend with “Big Data” [8]. Because

data continues to grow exponentially, the reasonable mitigation strategy is to

acquire more resources to store and process it. This comes in the form of cheap and

expendable computer servers or nodes which can be acquired for minimal cost and

in large numbers (i.e. Moore’s Law [9]). Networking these nodes into a cluster

allows systems to be scaled horizontally with incremental and predictable cost to

the organization.

 11

Distributed systems researchers have provided software engineers with a

diverse set of tools and techniques that can be used to efficiently utilize clusters of

servers. The focus of tools in this research area is largely concentrated on

improving data storage and access algorithms at low levels of abstraction and is

primarily presented at conferences such as VLDB [10]. It must be noted that this

research is incredibly important; without it, the software industry would not be

where it is today. However, an unfortunate side effect of a focus on low-level system

attributes is that the abstractions provided to users (i.e., application developers) by

these technologies require an in-depth knowledge of the underlying distributed

systems to correctly and effectively use the provided Application Programming

Interfaces (APIs). This forces the application developer to deal with immense

amounts of complexity when adopting new data storage technologies. To

successfully adopt these technologies, an application developer must not only

envision the current and future needs of the end user (i.e., the system user), but

also understand the constraints which the architect of the system was under—

appreciating the perspective, values, and trade-offs made by the system architect is

key to effective utilization.

To better understand the current state of these frameworks, it is helpful to

organize the most widely adopted technologies and present an overview of each.

2.1 Data Store Technology Overview

Capturing data is core to every software application and, as such, will be the

focus of this section and a critical aspect of this dissertation. As the rate at which

 12

data is captured continues to increase in volume and velocity, the need for

specialized data storage systems is drastically increasing. Software engineers must

choose from an ever-growing list of technologies developed to capture and sift

through data. These technologies fall into one or more of the following classes

shown in Table 2-1 and will be described throughout the remainder of this chapter.

Class Technology Attributes

Relational Oracle, MySQL Highly-structured data model, complex
scalability, optimized for OLTP

Columnar Bigtable,
Cassandra

Semi-structured data model, linearly
scalable, storage optimized for data reads

Key-value
GFS, Hadoop,
Dynamo

Hash-based data model, linearly scalable,
efficient reads and writes

Document Lucene, MongoDB
Easily adoptable data model, used for
information retrieval, optimized for
flexible ad-hoc data access

Network
Pregal, Neo4j,
Giraph, Titan

Relationship data model, small objects
only, optimized for network traversals

Table 2-1. Popular classes of large-scale data stores.

2.1.1 Relational

Typically, an application begins by persisting data in a relational database

management system (RDBMS). This type of solution stores data in a series of

tables, each of which contains rows and columns. Data is grouped together on disk

as continuous rows in a random access structure or an order generally matching the

access pattern (e.g., B-tree). Each row is a datum, which is required to conform to

 13

the schema associated with the table, thus, having a set of attributes represented by

columns. Tables are linked via foreign keys that allow for traversal from one row to

another. Object graphs are stored in a reference based and normalized

representation. This design allows for space efficient utilization of storage resources

(i.e., no data duplication due to normalization), but it requires random access to the

storage layer when data references are resolved. This can make read operations on

large data sets compute intensive, especially if the data is too large for memory or a

solid-state drive (SSD), forcing data retrieval from a hard disk drive (HDD).

Much research has been done on making relational systems more read

efficient, including denormalizing the schema as in a Star Schema [11]. Even with

this approach, row based systems have been shown to underperform other designs

when it comes to online analytical processing tasks [12]. However, even with their

limitations, relational data stores provide end users with an extremely accessible

data model that affords straightforward persistence and ad-hoc querying. To scale

relational technologies to accommodate large amounts of data, data is partitioned in

predetermined and application specific shards which makes persistence and

retrieval across shards difficult if not carefully implemented. Availability is

accomplished by replication of data to a “hot” backup. In the case of a system

failure, all requests are switched to the replicas. Flexibility is largely given up to

provide the user with data validation and normalization. It is worth noting that

systems of this nature have been widely used for decades and scaled to extreme use.

Harizopoulos showed that typical online transaction processing (OLTP) systems

 14

spend their time divided almost evenly between logging, locking, latching, and

buffer management [13]. However, removing any of these features from the OLTP

system has been proven to drastically increase its performance [14], making

RDBMS a viable technology choice for organizations willing to customize, tune, and

maintain them. Typical vendors for this class of storage system are Oracle, IBM,

SAP and Microsoft. Open Source alternatives are MySQL [15] and PostgreSQL [16]

among others.

2.1.2 Columnar

Columnar data stores provide an easily distributed storage system while still

providing users a simple data model. The data model typically provides structure in

the form of Rows and Columns, essentially exposing a multidimensional map or tree

in which to store data. A wide-column columnar data model first implemented by

Google Bigtable [17] uses rows or “row keys” to index into the first (i.e., outer) map.

The second (i.e., inner) map contains columns and column values which do not need

to adhere to any schema, providing flexibility to the user and grouping columns

together on disk. Other columnar technologies, such as Google Dremel [18], allow

the enforcement of a flexible schema and differ widely in their implementation, yet

still group columns together for persistence on disk, which enables extremely

efficient data access.

Regardless of the system, domain modeling for columnar storage systems is

non-trivial and is a research area investigated by the author [19]. Further work is

needed to better provide tools and processes for adopting columnar systems in place

 15

of existing relational-based applications. Distributed columnar stores, such as

Cassandra [20], distribute data across a cluster of machines by row. This operation

is often transparent to the user and done in a way that enables trivial expansion of

the cluster as needed. Cassandra achieves high levels of availability by replicating

rows and columns on many machines throughout the cluster. If a node is lost due to

a failure, the data is available to be read from an active replica. It is common to set

a replication factor when deploying such a system, which determines the number of

replicas that must be maintained by the system. Often replication is handled

without intervention from the user making columnar stores compelling technologies

for organizations in need of “out of the box” scalability and availability.

Columnar systems have been deployed at Google [17] and Facebook [20] for

many years but recently have experienced tremendous growth among small to

medium sized enterprises. Google Dremel, released as Google BigQuery [21], has

gained popularity for its analytics capabilities and has a popular open source

implementation, Apache Parquet [22]. HBase [23] and Cassandra are open source

implementations of wide-column stores which have both sparked an assortment of

vendors seeking to ease complex transitions to columnar stores from relational data

stores—the most prominent being DataStax [24], which has focused primarily on

making Cassandra accessible to the enterprise.

2.1.3 Key-Value

Key-value technologies are typically implemented as distributed hashes. In

contrast to columnar (i.e., wide-column) systems, key-value stores do not provide

 16

the user with a data model abstraction on top of a simple map. Operations such as

get() and put() are supported across these systems, with each providing enhanced

API functionality depending on anticipated use. There are a variety of in-memory

key-value systems including Redis [25], MemcacheD [26], and EhCache [27]. These

systems distribute a hash of values across a cluster using memory as storage for

quick access. Hashes can typically be configured to be persistent through a machine

power cycle. If the data is too large to be stored in memory, a more appropriate, file

system based technology is typically chosen. Systems such as Google File System

[28], Hadoop [29], and Dynamo [30] provide the user with a persistent distributed

hash. Google File System and Hadoop in particular expose a file system based API,

similar to POSIX [28], which allows consumers to invoke create, read, update, and

delete (CRUD) operations on files and folders, addressing data via paths. In the

case of GFS and Hadoop, the file data split and placement is determined by a single

Master node. All file access requests from clients are handled by the Master node

that sends back location information for each split that the client can then use to

request data directly from individual cluster nodes. Master nodes are often

replicated in near real time to allow for “hot” failovers, should the Master node

become unavailable.

Dynamo does not provide a file system abstraction, instead implementing a

very simple get()-put() interface and focusing on scalability, availability, and

durability. Unlike GFS and Hadoop, Dynamo does not rely on a single Master node

to partition its data, relying on consistent hashing to partition data, which allows

 17

for easily expanding a database across a cluster of machines. Dynamo allows any

node within the cluster to be addressed directly to read or write data, routing

clients to the correct host within one network hop. In this way, Dynamo strives to

be “always-writable” or available, even while experiencing multiple node failures.

All of the described disk based key-value systems support out-of-the-box

replication that is largely transparent to the user, providing a high degree of

availability. By completely eliminating the ability to impose a data model, key-

value (distributed file system) technologies provide the foundation for other large-

scale data formats and stores, such as Apache Parquet and HBase, respectively.

Unfortunately, the lack of a flexible domain model forces software engineers to store

complex objects and relationships in unfamiliar and convoluted ways, often

denormalizing object graphs and requiring the persistence of data in a way that

anticipates how it will be accessed. Although this challenge is not unique to key-

value stores, the lack of even the most basic support for a data model makes

adoption of these technologies difficult for enterprises struggling to scale.

2.1.4 Document

Document data stores provide the user with the ability to model objects as

documents. Document data stores often expose the binding of fields to primary

types such as strings, numbers, and dates. This paradigm is familiar to anyone who

has worked with an object oriented language and especially those who have

previous experience with object relational mapping technologies (ORMs). While the

type of document that each vendor supports differs (XML, JSON, BSON, etc.), they

 18

typically require each document to provide a unique identifier when stored. They

differ from relational databases by allowing flexibility at the field level of each

document. In a relational database each row in a table must have the same number

of columns as all the other rows present in the table. Document stores give the user

the flexibility to persist documents (i.e., rows) in a collection that differs in the

number and type of fields (i.e., columns) associated with each document.

In addition to providing a relaxed schema, document stores are often

associated with information retrieval tasks. The APIs exposed by document stores

are rich with query support. Lucene [31], a search engine technology, is one of the

most popular open source implementations of a document store. It provides full text

search, attribute filtering, and faceting over any set of documents stored in its

index. It also provides out of the box support for text stemming, tokenization, stop

word removal, and result scoring. The flexibility of Lucene has led to the

development of two popular distributed search engines, Solr [32] and Elasticsearch

[33]. While they differ in implementation, they both provide a highly available and

scalable storage solution without relinquishing a familiar domain model and ad-hoc

query support like other large-scale data stores. However, these features do come

at a cost. Document data stores are not designed to handle very large (e.g.,

gigabytes) individual files like distributed file systems are and, as such, are not

optimized for reading and appending large amounts of data from and to disk. This

often makes them a poor choice for the underlying systems of batch processing

frameworks such as MapReduce [34]. In practice, they can be problematic to scale

 19

for large amounts of data and difficult to make durable. MongoDB [35] in

particular has had significant scaling problems documented by the teams struggling

to adopt this promising technology [36].

2.1.5 Network

Network based data storage technologies persist an interconnected graph of

vertices and edges. A graph is an extremely expressive way to capture objects and

relationships and allows for an easy domain model transition from a relational

database because most of the available vendor solutions allow the addition of an

arbitrary number of properties to any vertex or edge, otherwise referred to as a

property graph. Network stores are most commonly used when the number of edges

between nodes becomes unmanageable in any other storage technology or when the

application benefits greatly from graph algorithms and theory (e.g., shortest path

between two nodes). Many organizations use a network to model friend and

follower relationships, allowing quick access to large numbers of friends or followers

and making the extremely common “Do you know?” feature trivial to implement.

However, network stores are typically poor at handling large files or vertices and

edges that have a large number of properties associated with them. Scalability and

fault-tolerance of these systems vary widely between implementations. Systems

like Google’s Pregel [37] are extremely scalable (e.g., thousands of commodity

machines) and fault-tolerant. An open source implementation of Pregel is available

as Apache Giraph [38]. The open source graph database Titan [39] layers a graph

API on top of the columnar store Cassandra. Titan cleverly maps networks onto

 20

Cassandra’s data model, which allows Titan to take full advantage of Cassandra’s

high availability and scalability attributes. However, the most popular network

store available to the enterprise is Neo4j [40], which can be made highly available

through master-slave replication and scalable by the addition of more read-capable

replicants.

All of the described technologies provide a wide array of desirable features for

applications. Unfortunately, the research surrounding these technologies focuses

primarily on storing and retrieving arbitrary data. While this is an important

focus, it is limited from the perspective of the software engineer who has become

accustomed to working with objects and relationships. Seldom does the software

engineer decompose problems in terms of just data. A general lack of empathy for

the software engineering perspective has resulted in numerous challenges that

must be overcome in order for an application developer to properly benefit from this

valuable set of technologies.

 21

CHAPTER 3: Towards N Data Store Architectures

Although there has been an explosion of new technologies available to the

software engineer in the last decade, significant challenges still remain. The

distributed systems researchers who developed the systems described in the

previous chapter were focused on issues concerning scalability, availability, and

durability. While these issues are of extreme importance, they are not the only

issues of concern to a software engineer tasked with making technology choices for

their application.

3.1 Challenges for Software Engineering

Software engineers, as end users of large-scale technologies, often lack

expertise in distributed systems. These large-scale technologies introduce

scalability, availability, and durability at the cost of complexity for the end user, the

software engineer. Although these system attributes are extremely attractive for

any application developer, the complexity of adopting them may make “scaling up”

or performance tuning more viable for an organization that lacks distributed system

expertise. This is unfortunate, as “scaling out” has been shown time and again to

better serve an organization in terms of cost and performance.

Software engineering organizations are required to make technology

decisions frequently and one of the primary attributes these organizations evaluate

when looking to adopt new technologies is accessibility. Many of the technologies

 22

detailed in the previous chapter lack a vision for how application developers will use

them. Recognizing what influences an application developer to adopt a technology

is essential to creating an accessible data store.

Understanding features that motivate an application developer to adopt a

particular technology is an emerging area of software engineering research.

Empirical evidence is not available for all technology choices but much work has

been done on programming language adoption. Meyerovich et al. found that open

source libraries, existing code, and experience, largely determine language choice

while intrinsic features such as performance, reliability, and simple semantics do

not [41]. The features found to matter least in language adoption are broadly the

focus of large-scale data stores. While we cannot empirically claim that the same

features influence data store adoption as language adoption, we do contend that

both are motivated by accessibility, which has not been the focus of large-scale data

stores thus far. Features such as scalability, availability, and durability are as

essential to data store technologies as performance and reliability are to

programming languages, but they may not be of primary importance with regards

to user adoption.

Hanenberg et al. [42]–[45] provide another example of accessibility

motivating technology choices. Hanenberg and his colleagues focus on providing

empirical evidence for claims on both sides of the “static vs. dynamic” language

debate. Their work shows that there are clearly defined areas where it does and

does not matter what type of language one uses to accomplish a development task.

 23

Their work suggests that there are certain activities where static type systems have

distinct advantages. The results show that static, in comparison to dynamic, type

systems improve system maintainability [42], provide implicit design decision

documentation [43], and improve the usability of unfamiliar APIs (even with the aid

of a modern IDE) [44]. In spite of empirical evidence, dynamic languages are

increasingly popular due to their accessibility. Proponents argue that type

conversion is time-consuming and errors due to type inference are simple to correct

despite research showing this to be invalid for systems over ten lines of code [45].

Regardless of the advantages promised by large-scale data stores, they must

be carefully weighed against the complexities they will introduce. The advances in

scalability, availability, and durability attack aspects of what Fred Brooks describes

as the accidental difficulties of software engineering [46]. Although these attributes

contribute to reducing some difficulties, they create a great deal of accidental

complexities that distract the software engineer from focusing on essential

difficulties. In his article, No Silver Bullet, Brooks identifies three “breakthroughs”

in accidental difficulties that large-scale systems reintroduce during adoption.

Brooks notes advances in high-level languages will decrease complexities

encountered during software development. Today, it is common for a large-scale

data store to ship with its own domain specific language (DSL) or data access

paradigm, which results in additional complexity for the software engineer as now

they must gain an in-depth understanding of additional abstractions for each

specific system they wish to introduce into their architecture. Examples include

 24

SQL, CQL (Cassandra), MapReduce (Hadoop), Gremlin (Titan), and Cypher

(Neo4J). Adopting an additional system results in intensive effort for the engineer,

which deters them from choosing the best system for the task at hand even when

the system offers a much-desired feature set.

The second accidental difficulty Brooks considers solved is time-sharing.

Time-sharing, he states, “preserves immediacy”. In a large-scale distributed

system, resource coordination happens rapidly at varying levels of abstraction.

However, at the layer closest to the software engineer, the processing paradigm for

large amounts of data is batch processing. The most widely used large-scale system

for data processing is currently Hadoop, which is an open source implementation of

Google’s MapReduce. MapReduce, and as a result Hadoop, is a distributed system

that allows the user to harness the power of an arbitrary number of computers

without having to understand the underlying complexities. Utilizing MapReduce

affords an organization an incredible amount of data processing capabilities that

has helped propel the widespread adoption of Hadoop. What many organizations do

not comprehend is the trade-off in productivity they are making because Hadoop

exposes its processing capabilities via a batch processing interface, which by default

does not ensure proper time-sharing of the system by leaving submitted jobs in a

queue until cluster resources are made available for processing. For this reason,

even Google, the creators of MapReduce, have largely abandoned the framework,

opting for more real time technologies [47] that facilitate more iterative

development. Large-scale data stores often make it difficult for software engineers

 25

to preserve in their minds the context of the problem they are solving; while batch

jobs or long running queries are being scheduled and run over hours, days and—in

extreme cases—months, the software engineer will likely move to other tasks only

to be interrupted at a later point with job failures or incorrect results.

The third accidental difficulty cited by Brooks as solved is that of the unified

programming environment. We have yet to see a body of work on this subject, but

one can imagine a need to again solve this difficulty for the class of applications

addressing “Big Data” challenges. A unified programming environment for large-

scale systems will need to be designed from inception to work with heterogeneous

systems that leverage a diverse array of languages and access patterns. Without

research in this area, software engineers are forced to context switch frequently and

gain in-depth understandings of the complete system. This results in immense

levels of complexity for the software engineer, which, in turn, limits the quality and

velocity of application development in comparison to homogeneous systems.

The software engineering researchers of the 1980s and 1990s worked

diligently to reduce the accidental complexities involved in software development.

They pioneered new languages, patterns, processes, and programming

environments that allowed the software engineer to focus on the essential

difficulties of software. As applications have moved from single install, desktop

environments, to complex data-intensive infrastructures deployed across thousands

of computers, research is needed to afford the same support of the past to the

software engineers of the present. Only through the development of new tools and

 26

techniques can the field of software engineering improve the accessibility of large-

scale, distributed, heterogeneous systems of systems.

3.2 Opportunities for Software Engineering

This dissertation examines open issues in the area of software architectures

for large-scale, heterogeneous data-intensive systems. Software engineering

research is largely deficient in the study of emerging trends related to the

development of highly-distributed SaaS applications composed of specialized data

storage technologies, instead of “one-size fits all” systems. The lack of widely

adopted and well-proven architectures and patterns in this area leads software

organizations to make costly investments in both financial and human capital

before pursuing technologies that will benefit themselves and their customers.

In the previous chapter, we provided an overview of existing technologies

related to large-scale data storage, detailing the minimum knowledge required by a

user for non-expert level utilization. These systems, without modification, typically

require expert-level knowledge in distributed systems and a deep understanding of

the data modeling capabilities of each. Data models afforded by these technologies

even go so far as to force the denormalization of object graphs, which causes data

duplication and the elimination of object references. This technique, among others,

is foreign to software organizations that have previously relied on only relational

data storage technologies and requires well-documented abstractions to increase

system accessibility. Without research into the complexities encountered during the

adoption of large-scale data stores, software engineers will continue to give up

 27

accessibility and flexibility in exchange for scalability, availability, and durability.

The idea that software engineers can be afforded all of these highly-desirable

features simultaneously serves as motivation for this work.

By leveraging an understanding of available technologies, this dissertation

will work to abstract away complexities inherent in the adoption of one or many

large-scale data stores. Design patterns and architectures have been proven to aid

in software engineering tasks by allowing the engineering team to efficiently

communicate complex subjects without lengthy and distracting discourse [48], [49].

While there is a significant amount of peer-reviewed research available for small,

object-oriented systems [50], much work is needed before a team of software

engineers can effectively communicate about the issues and concerns that present

themselves while developing with a variety of disparate data stores.

This dissertation develops and documents novel architectures and patterns to

be applied by organizations that wish to adopt specialized technologies into

homogeneous or existing heterogeneous environments. The use of these

abstractions, alone or in combination with others will greatly decrease the risk

required for an organization to adopt highly specialized frameworks and serve to

increase the accessibility of these frameworks for all involved.

 28

CHAPTER 4: Related Work

Much research has been accomplished by the distributed systems community

to provide application developers with numerous, extremely capable technologies.

Other computer science disciplines are now diligently working to contribute.

Although the resources were available for the software engineering community to

devote attention to, their focus was elsewhere. Software engineering has improved

the accessibility of software development immensely in the past. Unfortunately,

many of these advances are not directly applicable to large-scale heterogeneous

systems without modification or extension. As detailed in previous chapters, the

lack of architectural patterns, unified programming languages, and development

environments for distributed, heterogeneous systems forces the software engineer to

cope with immense accidental complexities.

Homogeneous “one-size fits all” systems afforded a set of constraints that

made eliminating numerous accidental difficulties reasonable. The first desktop

environments and object oriented programming languages were proposed decades

ago and continue to be improved by the software engineering community to this

day. With many common problems solved, the focus of the community has evolved

beyond object oriented design patterns (e.g., the transformation of the OOPSLA

conference into the SPLASH conference). The rapid growth in data has pushed

database designers to innovate independent of the software engineering community.

Michael Stonebraker first noted the move from traditional database management

 29

systems by describing the death of the “one-size fits all” data store [51], [52],

foreseeing that traditional relational systems—in use for over 25 years—would be

replaced by a variety of specialized technologies. Stonebraker has since been

involved in the creation of many well-known large-scale data stores including C-

Store [14] and H-Store [53], which later became commercialized as Vertica [54] and

VoltDB [55]. It was the distributed systems community that anticipated and

responded to the seemingly ever-increasing amount of data software engineers are

faced with today.

Abstracting away the complexities of working with multiple data stores is an

emerging area of interest for both academia and industry. Scott Leberknight was

the first from industry to attach a name to this challenge. In a blog post later

popularized by Martin Fowler [56], [57], Leberknight describes polyglot persistence;

he says, “Polyglot Persistence, like polyglot programming, is all about choosing the

right persistence option for the task at hand” [58]. This description captures the

motivation for this dissertation. Software engineers should be encouraged to use

the appropriate technology for data storage just as they do with languages.

However, similar to how introducing an excess amount of programming languages

into an application stack complicates application development, so does the

introduction of many data stores. In polyglot programming, researchers are

developing systems to allow application developers to easily program in one to many

languages within the same file with limited complexity [59]. Similar efforts—albeit

in spirit rather than implementation—are required to address the complexities of

 30

polyglot persistence. Although some efforts are detailed below, they largely result

from work within the distributed systems community and focus on attributes other

than those of accessibility and flexibility.

One approach to polyglot persistence simplification is through the use of a

universal REST-based API. A REST-based approach to persistence across one or

many database-as-a-service systems (cloud-based databases) was first proposed by

Haselmann et al [60]. They acknowledge the growing variety of DBaaS vendors and

APIs and stress the need for a common access standard based on REST. The goals

of their proposed API are to be flexible, exchangeable, and comparable. They

describe ways to attack these desired attributes by focusing on entity handling,

schema definition, and querying. The API allows for the persistence and retrieval of

any entity through reserved URIs such as “/schema” and “/queries” where the

developer would register a series of schemas and queries to be enforced and used by

the application. Attributes of stored entities can be retrieved through the use of

XPath expressions under the reserved URI “/xpath”. The paper does not provide an

implementation of the API and, as stated by the authors, “...is particularly meant as

a basis for further discussion of the general notion of a universal DaaS-API”. Aside

from the lack of API implementation, the work does not discuss some very complex

issues. In particular, developing a strategy for the decomposition of an object graph

for storage in relational and non-relational systems is non-trivial and critical to

successful adoption of the proposed API. Additionally, the focus on schema

development and enforcement as a primary aspect of the API is a poor choice for the

 31

purposes of this dissertation: many large-scale data stores lack schemas and are

able to provide high degrees of flexibility because of it. Additionally, the notion of

ad-hoc querying and query languages beyond those specified in the paper is largely

ignored, forcing the user to register queries with the “/queries” endpoint before

being able to execute them and only supporting SQL as a query language.

Extending upon the universal REST-based API proposal of Haselmann et al.

is the ORESTES system by Gessert et al. which provides a practical

implementation of a unified, REST-based storage and access API for four popular

NoSQL data stores (Versant, db4o, Redis, and MongoDB) [61]. While a primary

motivation for the system is improving network latencies for applications accessing

multiple DBaaS systems, the ORESTES middleware also provides a REST-based

implementation for accomplishing polyglot persistence. The resulting API appears

to expose an interface similar to Haselmann et al. but with a variety of additions,

including caching and support for transactions. In a subsequent paper, they detail

their efforts towards a unified REST API for DBaaS and briefly describe the notion

of a Polyglot Persistence Mediator, a system component that “routes data to

different storage backends based on declarative SLAs.” The prototype

implementation described in the paper is capable of routing entities to either the

MongoDB and/or Redis data stores. Of interest is the authors’ choice to allow the

user to specify field-level boundaries on latency, availability, and replication factors

in a declarative way. Issues concerning latency are certainly important when

working with a variety of Cloud providers and allowing thresholds to be set in a

 32

declarative way makes these otherwise non-trivial guarantees largely transparent

to the user. While ORESTES is a significant advancement over the work proposed

by Haselmann et al., it reflects some critical design choices that make it difficult to

extend for the purposes of this dissertation. First, increasing the accessibility of

polyglot persistence for the software engineer is not the primary motivation for the

system. As such, the system designers developed an independent system that must

be deployed and maintained in addition to the application and data storage

systems, thereby adding to the complexities already present when adopting

multiple data stores and adding additional overhead in the case of cache misses

during entity retrieval. The authors’ implementation of a unified REST-based API

for cloud data stores ignores the need for an abstraction of the querying languages

of each data store, leaving it up to the user to understand the intricacies of each.

Similar to the schema constraints imposed by Haselmann et al., the ORESTES

system enforces schemas on schema-less data stores, while going even further to

provide transactions on top of systems that lack transaction support. While their

prototype looks promising, again, the primary system motivator is SLA fulfillment,

not end user accessibility of polyglot persistence.

Polyglot persistence not only introduces complexities associated with data

persistence but also with data access (e.g., retrieval and querying). As discussed by

Gessert et al., one approach to making the retrieval of data from a variety of

systems more accessible is to automatically route access requests to the “best” store,

based on some set of criteria. One system developed by Lim et al. focuses

 33

specifically on the implications of polyglot persistence in relation to query support

[62]. Their system, Cyclops, is a concrete implementation of an approach they refer

to as DBMS+ that focuses on providing unified query support for Esper, Storm, and

Hadoop. The choice of these systems is interesting because of the mix of stream

processing and batch oriented interfaces. When the user submits a query to the

DBMS+ system, it is routed to the best system for the task. The researchers

accomplished automatic routing by developing a query language that allows their

system at run-time to choose between available query processing frameworks. As

with ORESTES, the user is able to declaratively register execution requirements

with the system. Doing so allows the user to easily describe what performance they

require without implementing complex system logic. The authors’ also take an

“imperial” approach to implementing their query API, which they believe gives

them an advantage over a federated approach by providing “full control of what gets

executed and how”. A federated approach, in contrast to an imperial approach (i.e.,

direct execution engine access), makes use of the storage system-specific query

language, possibly introducing errors during query translation. An imperial

approach to polyglot persistence—if imperial access were provided by all vendors—

is extremely interesting and, as shown by Lim et al., could greatly enhance

accessibility to application developers while decreasing the effort needed to access

many data stores simultaneously. A limitation of the imperial approach is that

offering an expert user extension points into an underlying system becomes difficult

as a result of bypassing the system specific query language.

 34

While the work discussed here is an important first step toward providing

abstractions on top of the inherent complexities of working with heterogeneous

systems at scale, the work contributed by this dissertation offers a different

approach. We are not primarily motivated by issues of performance or the creation of

a new language or system, but by the need for expressive patterns that eliminate the

tight coupling of an application to its data stores. As far as we are aware, we are

among the first members of the software engineering community to not only

acknowledge the lack of accessibility provided by these technologies, but to actively

work towards rectifying it. To do so, we leverage previous work in the area of

enterprise architectures and patterns for one-size-fits-all systems, and work to

adapt them to polyglot persistence systems. The contributed work differs from

others described in this chapter by focusing on limiting the accidental complexities

of adopting these technologies, not only the practical matters associated with

system performance. We believe this approach results in greater accessibility of

these technologies, allowing software engineers to focus on the essential difficulties

of software development.

 35

CHAPTER 5: Evolution of the Persistence Tier

The development of new persistence architectures for aiding in the utilization

of specialized persistence technologies is needed to encourage software engineers to

focus on the non-functional attributes of most importance to their application. A

software application typically fulfills the functions of capturing (i.e., collecting and

storing), understanding (i.e., analyzing), and presenting (i.e., reporting) data (see

Figure 5-1). To satisfy each function, application technologies must be chosen

carefully. Technologies provided by distributed systems researchers are designed

and evaluated with scalability, availability, and durability as primary drivers,

leaving the application developer to choose from a set of complex technologies to

fulfill each function of the application.

Figure 5-1. Application functions with associated technology trade-offs.

 36

In addition to scalability, availability, and durability, we propose that

software engineers make technology choices based on accessibility and flexibility.

As discussed in Chapter 3, software engineers often choose technologies based on

these two attributes. This behavior follows as a practicing software engineer is less

a scientist than engineer, primarily concerned with task completion rather than

pure scientific pursuit.

The movement away from one-size-fits-all data stores and towards

specialized data stores has allowed applications to adapt to significant increases in

data and usage. However, adopting a heterogeneous architecture can be

overwhelmingly complex for an application developer. Each specialized system

provides the end user with a different set of data storage and access APIs. In

addition to mastering a variety of interfaces, the application developer must also

understand how to modify the data model for acceptance by each system, which

requires a deep understanding of the underlying distributed system. To

successfully use many of these systems, the software engineer must move past the

tools of object oriented analysis and design, and force themselves into the realm of

the system designer whose focus is on performance and storage of the data, not

necessarily providing accessible APIs.

This dissertation details the development of an architectural pattern and

associated framework that provides accessible and flexible polyglot persistence. This

work extends the abstract concept of polyglot persistence, which encourages the use

of many specialized data stores, by providing an expressive and extensible

 37

implementation. Pairing polyglot persistence with extensions to enterprise

architectural patterns allows for the encapsulation of logic related to persisting and

retrieving objects and relationships from one to many data stores while also

decoupling the application from data store specific implementation details. Pairing

in this manner enables the adoption and abandonment of data stores without the

need for the entire development organization to gain expertise in the intricacies of

each data store utilized throughout the architecture.

5.1 Traditional Enterprise Architecture

A traditional enterprise architecture will isolate application code (e.g.,

controllers, validators, etc.) from business logic via a service tier [63]. The service

tier, in turn, leverages a Repository pattern to manage persistence details.

Repositories encapsulate all knowledge related to persisting and retrieving objects

and relationships to and from data stores. Repositories typically accept and return

data models, isolating the application from the details of the underlying persistence

framework (e.g., JPA, JDBC, ODBC, ActiveRecord, etc.). The Repository pattern,

shown via sequence diagram, is given in Figure 5-2.

 38

Figure 5-2. Adapted from the Repository pattern as described by Fowler

In Fowler’s representation [64], [65], the client interacts with the Repository

to persist and query the underlying storage mechanism which could range from an

in-memory collection to a database or distributed data store. The Repository

exposes interfaces to the client that accept and return data models, masking the

details of data mapping and allowing the replacement or extension of persistence

technologies without forcing changes through dependent code paths. It is common

practice to implement a Repository per domain object. An example of a

homogeneous enterprise architecture, utilizing a service and persistence tier (i.e., a

three-tier or multi-tier architecture), is shown in Figure 5-3.

 39

Figure 5-3. A traditional homogeneous enterprise architecture.

In the above architecture, each Repository only interfaces with one

persistence technology such as a relational database. This is an accepted initial

architecture for SaaS applications as it provides the application with isolation of

concerns at each level of the software stack, and allows the developer to pass a

domain model from tier to tier similar to the Model-View-Controller [64] concept,

also widely used throughout SaaS applications.

5.2 Traditional Multi-Data Store Approach

As an application matures and requires the use of a specialized storage

system, the persistence or service tier must be augmented to interface with multiple

persistence technologies. Adding additional responsibilities to Repositories or

 40

Services achieves varied results. This approach primarily violates the single

responsibility principle [66]. As detailed previously, the service tier is designed to

handle business logic and the Repository is primarily concerned with the details of

persistence. This approach to polyglot persistence is provided for reference in

Figure 5-4.

Figure 5-4. Ad-hoc polyglot persistence.

While this approach can lead to successful polyglot persistence, as

experienced by Project EPIC [19], [63], the onus is on the software engineering team

to understand the nuances of each underlying data store and associated persistence

framework. Although the above architecture isolates the application from the

complexities of persistence among multiple data stores, it tightly couples the

 41

Repositories or Services to more than one persistence framework, which makes

working with multiple data stores brittle and difficult to adopt or abandon.

Additionally, this approach has the undesired side effect of putting a great deal of

intelligence into a single Service or Repository, depending on where the developer

chooses to embed this behavior. Each Service or Repository will be responsible for

understanding how to convert data models, interact with multiple stores, and

reconcile differences among data stores. While this approach may be maintainable

for a small number of data stores, it does little to mitigate the complexities

associated with implementing a large number of data stores. Combining all of these

responsibilities into otherwise straightforward components is a clear violation of the

single responsibility principle.

5.3 Traditional Persistence Architecture Design Constraints

It is the goal of this dissertation to enable the adoption of any number of

stores without vast increases in complexity for the software engineer. The number

of specialized systems available to application developers is likely to continue to

increase, not decrease, and the software engineer must be afforded the tools to

mitigate the inherent complexities of adopting such an architecture. To accomplish

this, the enterprise architecture pattern must be enhanced to take advantage of

polyglot persistence. As the isolation of data mapping through persistence

frameworks already occurs within the persistence tier, this tier provides a

reasonable point of extension. What is required of this extension is the ability for

the persistence tier to continue to accept and return a data model regardless of the

 42

underlying storage system. Doing so will allow applications to adopt polyglot

persistence without incurring the cost of the redevelopment of their existing

Services, thereby increasing accessibility and providing the application with the

flexibility of multiple, possibly redundant, data stores. Designing, implementing,

and maintaining such an architecture is non-trivial and fraught with challenges.

Satisfying the need for the persistence tier to accept and return a data model

to its client—required to provide accessibility—is not straightforward when

implementing polyglot persistence. When using one data store, maintaining this

contract between the client and the Repository is trivial. There is one strategy for

data model decomposition and reconstitution provided by the application developer

or the underlying persistence framework. Extending this contract across multiple

persistence frameworks becomes complex as each data store exposes its own

strategy for data mapping. Numerous systems enforce schema and data

normalization (e.g., relational data stores) while others encourage denormalization

(e.g., columnar, key-value). A reasonable abstraction of how each data store

requires its data model to be formatted for effective storage is shown in Table 5-1.

 43

Table 5-1. Collection based representations of data store data models.

Without proper isolation, these data mapping strategies are implemented in

an ad-hoc manner, blending separations of concern and limiting knowledge reuse.

To decrease the complexities associated with data model transformations, it is

helpful to abstract these details into reusable components, decoupling them from

the Repository. To accomplish this abstraction, each component must understand

the type of data store being utilized when performing domain model decomposition.

While relational data stores may be more straightforward due to technologies such

as object relational mappers, similar technologies are not provided by all data

stores. Understanding the analogous implementation of a primary key or query

criteria in a columnar, key-value, document, or network data store is difficult and

dependent on use case. It is common to use complex object identifiers in non-

Class Data Model Backing Collection Interface

Relational Table Array[row][column] add(),
remove()

Columnar Row Map.Entry<[row key],
Map<[column name], [value]>>

put(), get(),
del()

Key-value Hash Map<[key], [value]> put(), get(),
del()

Document Document Map<[field name], [value]> put(), get(),
del()

Network Vertex,
Edge

Map<[property name], [value]>,
Map<[from id], [to id]>

put(), get(),
del()

 44

relational stores that can communicate a great deal more information than a simple

incremental counter. In Project EPIC (Empowering the Public with Information in

Crisis), the composite key used to store data in Cassandra is a combination of a

number of factors chosen by its application developer including a social media

search term, the current date, and a fragment of the MD5-hash of the content being

stored, all delimited by colons (e.g. “flood:2015106:a”). In addition to providing a

great deal of information about the content being stored, the Project EPIC key,

through the hash fragment, also determines how data is distributed among the

cluster for well-balanced storage. By slightly modifying an otherwise static row key

with a dynamic hash fragment, hot spots are avoided because a slight, but

predictable, variation in row key forces Cassandra to place the key throughout the

cluster instead of on a single node. Creating an abstraction capable of adapting to

such a use case is indeed difficult.

The next chapter introduces and elaborates on the Diamond architectural

style for polyglot persistence. This architectural style [67] has been developed to

represent how the persistence tier of a modern enterprise application should work

to reduce the amount of work required to adopt an unknown number of data stores.

The Diamond architecture provides a set of abstractions that require the

application developer to construct the persistence tier of their application in an

extensible way, allowing the adoption or abandonment of data stores while also

isolating any necessary code modifications from the rest of the application.

 45

CHAPTER 6: The Diamond Architecture

This chapter introduces the Diamond architecture for polyglot persistence.

The Diamond architecture is a set of abstractions developed by the author that, when

utilized in combination, greatly reduce the level of effort required to extend the

persistence tier of an application to interface with an unknown or varying number of

data stores. The Diamond architecture is designed to not only augment a

traditional persistence architecture but to further serve as an archetypal style

during application inception.

6.1 Overview

Traditional enterprise applications rely on persistence tiers that interface

with a single data store type. It is the responsibility of that data store to serve as

the one-size-fits-all solution for the persistence needs of the application. Although

the data store itself may provide mechanisms for scalability, availability, and

durability, the persistence tier is often architected to interact with one and only one

data store. The Diamond architecture recognizes the need to design for an unknown

or varying number of data stores and emphasizes the concepts of accessibility and

flexibility for data store utilization. Designing the persistence tier to interface with

1 to N data stores not only allows the application to easily adopt new and highly

desirable data store technologies, but also provides the application with the ability

to incorporate scalability, flexibility and durability within the persistence tier.

 46

The Diamond architecture encourages the reuse of the existing traditional

(i.e., three-tier architecture) architectural components, honoring contracts already

established between the application, service, and persistence tiers. A traditional

enterprise persistence architecture can be adapted to a Diamond architectural style

by, at a high level, leveraging two novel abstractions within the persistence tier.

Transitioning to a polyglot persistence architecture through the Diamond

architecture is done additively, in an effort to limit changes to existing code paths.

This dissertation describes the design and implementation of a polyglot

persistence architecture in its entirety. As described in the previous section, this is

a non-trivial task, but one that has the potential to make a significant contribution

in the area of software engineering for large-scale, heterogeneous data-intensive

systems. The rest of this chapter describes the design of such an architecture.

6.2 Approach

We are beginning with the popular enterprise application architecture, or

three-tier architecture, to form our initial design constraints [68]. In this approach,

an application is composed of an application tier, a service tier, and a persistence

tier. Often the persistence tier is implemented as a Repository pattern that is

responsible for interacting with an external data store (e.g., a relational database).

Data is passed between tiers using a rich data model that can be easily mutated

along the way. Communication between the application and the data store is done

through a persistence technology (e.g., JDBC, ORM, etc.). Applying these

constraints to our design forces the architecture towards acceptance of a rich data

 47

model while additionally working within the constraints of existing method

contracts provided by Services. The ideal design would work within these

constraints, requiring very few architectural changes. The primary design

constraint is that of a single point of entry and egress into the Service (e.g., the

application tier expects a traditional interface for persistence, regardless of the

number of underlying data stores). A successful design will allow for this constraint

but also easily adapt to an unknown number of data stores.

We begin with a naive approach to polyglot persistence provided by the

traditional enterprise architecture. To adapt to multiple data stores through this

approach, each data store is communicated with directly through complex Services

or Repositories, as shown in Figure 5-4 of the previous chapter. A slightly less

naive approach is to develop one Repository component per data model destined to

be stored in a particular data store.

 48

Figure 6-1. Repository per domain object per data store architecture.

Implementation of a more informed architectural approach presents three

distinct challenges. First, the Repository pattern, as described by Fowler, ensures

isolation of persistence from the client but requires an increase in intelligence to

properly route data between different data stores. Abstracting this intelligence in a

way that maintains existing contracts between the persistence and service tiers,

while preserving the desire to keep data store-specific persistence logic decoupled

and straightforward, is difficult. Second, data model decomposition and

reconstitution is required to persist to and read from multiple data stores with

varying data models. Third, invoking multiple Repositories incurs the cost of

needing to handle multiple results, which can be complex. An ideal architecture for

polyglot persistence would provide reasonable solutions for each of these challenges

while also allowing extension in areas where the end user may have unanticipated

 49

needs. Each of these challenges, as addressed by the Diamond architecture, will be

discussed, in detail, throughout the remainder of this chapter.

6.3 Diamond Architectural Components

6.3.1 Command

The Command pattern is documented by Gamma et al. [50] as a behavioral

design pattern. Due to its broad applicability, the Diamond architectural style has

been influenced directly by the Command pattern. The Command pattern is shown

in Figure 6-2.

Figure 6-2. Command pattern [50].

The Command pattern is primarily used to isolate behavior needed by a class

for future execution. A Command, as defined by Gamma et al., is responsible for

implementing a single method, execute(), which has no return value and, when

invoked, performs a discrete unit of work. The interface is provided in Figure 6-3.

 50

Figure 6-3. Conventional Command interface.

In this way the Command pattern creates a loosely coupled processing

element that holds state. The Diamond architecture makes use of this pattern to

encapsulate typical persistence scenarios such as CRUD operations in concrete

Command implementations. Using Commands in this manner forces loosely

coupled and highly reusable persistence logic throughout the application. For the

purposes of polyglot persistence it is necessary to enhance the signature of the

Command interface. The Diamond architecture recommends the Command

interface shown in Figure 6-4.

Figure 6-4. Diamond Command interface.

 51

The Command pattern recommended by the Diamond architecture affords

the ability to accept an arbitrary input and return an arbitrary output. Although

not required, this small change is recommended in an effort to avoid forcing the

Command to hold the state of objects (input and output) that will likely change with

each invocation. Adding input and output to the interface allows the Command

invoker to pass context sensitive input to the Command and have the Command

respond with context sensitive output. Enabling this behavior at the method level,

instead of during object construction, eliminates the need to construct a new object

as input changes. In this way, many Commands with distinct behavior can be

allocated only once, referenced later, and invoked as needed.

6.3.2 Runner

The Runner architectural component is responsible for invoking an arbitrary

set of Commands. The Runner accepts a collection of Commands and then invokes

them based on its defined behavior. The Runner is meant to encapsulate the

manner in which Commands are executed. This responsibility keeps the Runner

ignorant of the capabilities of the Commands and leaves it to focus on how to

execute an arbitrary series of Commands. The Runner interface is straightforward

and requires that the implementer accept a collection of Commands and input to

pass to each Command during its execution. Running multiple Commands will

produce multiple results; therefore, the implementer is additionally required to

return the total set of results occurring from Command execution. The Runner

interface is shown in Figure 6-5.

 52

Figure 6-5. The Runner interface.

In practice, it would be typical to provide, at a minimum, the ability to run

Commands consecutively and concurrently. Other interesting Runners are

described in Chapter 7. The Runner fulfills the role of the Invoker as described by

Gamma et al. Encapsulating the details of invoking a Command enables code reuse

in complex scenarios such as the concurrent execution of Commands.

6.3.3 Data Model Converter

The data models provided by each data store vary greatly among data store

implementations. To effectively persist and retrieve data from each store, data

models passed from the application or service tiers require modification. Data

models must be forward converted in preparation for persistence by a data store.

During forward conversion, the original data model may lose fidelity via attribute

removal or be transformed in other ways to adapt to effective storage by each store.

Backward conversion is the forward conversion process in reverse, where an

attempt is made to return a data model to the client that may have been pieced

together from multiple underlying data stores. Isolating this responsibility from

 53

the Repository allows the Repository to remain focused on delegation and

persistence details. The Converter interface is implemented by the user, likely

through callbacks, which decouples the rest of the architecture from domain model

conversion. Ideally this conversion logic is reused throughout the application where

required. Issues of data model versioning and migration will need to be addressed

during implementation. As discussed by Stonebraker, in the future, all but the

most complex data transformations might be handled without the need for a

programmer through reuse of common use cases or integrations with external tools

[69]. Sensible default Converters will provide the ability to convert a reference

based data structure to an embedded structure and vice versa.

Figure 6-6. The Google Guava Converter interface.

For the sake of reuse, the Converter interface shown in Figure 6-6 is that of

the Google Guava framework [70]. This interface has been found by the author to

be well designed and applicable to many usage scenarios, such as persistence in the

case of the Diamond architecture. Another Converter that provides the

functionality to forward and backward convert data could certainly be used, but for

the purposes of this dissertation, we will use the interface provided by the Google

 54

Guava framework. To justify our use of the Converter, it is helpful to describe an

example. Given a data model where a User owns many Documents, we will

illustrate the conversion process in Figure 6-7.

Figure 6-7. An example data model conversion.

In the example above (Figure 6-7), the User data model is passed to two

Converters that convert the data model for storage in relational and key-value data

stores. The UserRelationalConverter performs no operation in this example,

assuming the underlying persistence framework will accept the User data model as

is (e.g., via the use of an object-relational mapper). The UserKeyValueConverter

 55

implementation converts the data model from a reference-based structure to an

embedded document model representation that can easily be persisted to a key-

value data store. To accomplish this conversion, the UserKeyValueConverter

creates a composite key from the name and ID of the User and serializes the full

data model to JSON to store as a value. Although the actual behavior of each

converter will differ by data model and use case, this component attempts to isolate

these details from the rest of the architecture. For this example, the backward

conversion behavior would perform the analogous operations in reverse. The

UserRelationalConverter would pass the returned object graph from the object-

relational mapper back to the service tier that requested it. The

UserKeyValueConverter would perform the forward conversion process in reverse,

using the key to create a User object with the appropriate ID and name and the

information in the embedded documents attributes to recreate a collection

containing a Document with the correct ID and title. The resulting object graph

would match the one that was originally handed to the Converter for the forward

conversion process. The important lesson here is that these types of conversions can

be codified to handle a significant number of real-world data models and that

straightforward extension points can be added to default Converters to allow

software engineers to handle additional object models that require customization to

be converted accurately.

 56

6.3.4 Reconciler

Invoking more than one Command will produce more than one result or

results set. A core principle of the Diamond architecture is allowing an application

to adopt additional data stores without forcing contract changes further up in the

application stack (e.g., the service and application tiers). To achieve this, the

persistence tier must “fan-out” using a Runner to interact with multiple data stores

and “fan-in” before returning a result to the greater application stack. To

accomplish this fan-in behavior, the architecture provides for a Reconciler

component that is responsible for this behavior. A Reconciler is required to make

decisions about how to map the multiple results produced by invoking a number of

Commands into a single result. The interface for a Reconciler is shown in Figure

6-8. The Reconciler reconcile() method accepts a list of results and is required to

return a single result.

Figure 6-8. The Reconciler interface.

In practice, a Reconciler will have a variety of context sensitive behavior. It

may be favorable to apply an order of precedence when multiple results have been

returned by multiple data stores (e.g., take from relational first, columnar second,

 57

key-value third, etc.). It is also possible to perform a merge of all the results,

forming a composite result that is a combination of attributes stored across

disparate data stores. These are just a few of the possible use cases for such a

construct. Although similar to the Reduce described in MapReduce, the Reconciler

is meant to force the transformation of many results to a single result, not apply an

arbitrary transform to the results.

6.3.5 Pipeline

In the context of the Diamond architecture, a Pipeline is a construct that has

a single point of entry and egress, much like a Command or Service, and is typically

responsible for maintaining a collection of Commands. The Pipeline is, as described

by Gamma et al., the Client for the Command pattern. In the Diamond architecture,

this is largely an implementation detail rather than a constraint. Because it is

common for Commands to not hold state in our architecture, they may be created

anywhere in the application and added to a Pipeline at any time during the

application lifecycle. A Pipeline is responsible for implementing a single method,

run(), which begins execution of the processing elements it contains. However, it

will also likely provide the ability to add Commands to its state. Figure 6-9

provides the high-level Pipeline interface.

 58

Figure 6-9. The Pipeline interface.

The reader will note that the definition for a Pipeline and a Command are

nearly identical. This is intentional. The Pipeline is a container of Commands that

similarly accepts input and returns output. In practice, this constraint is used to

force the Commands present in the Pipeline to accept and return the same output

as the Pipeline.

Adding onto the Pipeline construct, we define the DiamondPipeline. A

DiamondPipeline is a Pipeline that requires a Runner and a Reconciler, which

provides the “fan-out” and “fan-in” behavior that lends the Diamond architecture its

name. The conceptual DiamondPipeline architecture is depicted in Figure 6-10.

 59

Figure 6-10. The DiamondPipeline.

As can be seen in Figure 6-10, the DiamondPipeline is composed of a Runner,

a collection of Commands, and a Reconciler. Once defined, the DiamondPipeline

can be used throughout the application, encapsulating all the necessary behavior to

interact with any number of data stores. Although a Pipeline can be executed

directly by a Service in the service tier, it may still be helpful to provide a

Repository that contains many Pipelines.

 60

6.3.6 RepositoryFacade (Optional)

To extend the Repository pattern to accommodate polyglot persistence, the

existing Repository in use by a Service must take on additional responsibilities.

Ideally, the polyglot Repository adheres externally to the responsibilities imposed

by Fowler but internally performs similarly to a Facade pattern [50] thus, wrapping

the complexities associated with delegating persistence tasks. The client (i.e.,

service tier) invokes methods on the RepositoryFacade, which, in turn, delegates to

the Pipeline that interacts with traditional Repositories through Commands

developed for each underlying class of data store as in Figure 6-11.

Figure 6-11. DiamondPipeline with RepositoryFacade.

 61

This implies the creation of a Repository per data store class (e.g. relational,

columnar, key-value, document, and network). Each sub-Repository would be

configured with the specific persistence framework for each data store in use. In

practice, the configuration of these Repositories will likely occur via an inversion of

control framework (a.k.a. dependency injection), alleviating the need to instantiate

and configure Repositories, Commands, and Pipelines before each use.

6.3.7 Final Architecture

The design of an architecture for polyglot persistence involves the extension

and creation of non-obvious, architectural patterns within the persistence tier. The

motivation behind the Diamond architecture is the desire to maintain a simple,

data model-based persistence contract between the service tier and the greater

application. Doing so allows business logic to be isolated within the service tier and

persistence details to be confined to the Repository. To the greatest extent possible,

the service tier is not to be concerned with the details of persistence, for a single

data store or multiple data stores. Through the use of Converters, the data model of

the application can be converted for use by a variety of stores without complicating

the delegation responsibilities of the RepositoryFacade. The final Diamond

architecture is provided in Figure 6-12.

 62

Figure 6-12. The Diamond architecture.

To provide a clear understanding of the common communications between

the architectural components, a sequence diagram describing the interactions of

each component is shown in Figure 6-13.

 63

Figure 6-13. Diamond architecture sequence diagram.

The architecture is designed to increase both the accessibility and flexibility

of large-scale data stores. To achieve accessibility, the architecture focuses on

maintaining existing concepts of enterprise architectures and preserving the desire

of application developers to work with rich data models. Flexibility is accomplished

by allowing the application developer to easily adopt or abandon data stores. These

attributes are of the utmost importance to application developers as it is highly

likely they will be confronted with an increasing, not decreasing, amount of

specialized technology choices in the future.

 64

CHAPTER 7: Implementation: The Machinist Framework

The Diamond architecture is intended to be easily implementable in a variety

of languages. For the purposes of this dissertation the reference implementation

was developed in the Java programming language [71]. Java was largely chosen

due to its widespread adoption among enterprise software organizations as well as

the increasing number of Java-based data stores. Regardless of language

preference, the overall Diamond architecture is designed to afford accessible

polyglot persistence for the implementer.

7.1 The Machinist Framework

The Java-based implementation of the Diamond architecture described by

this dissertation is produced as the Machinist framework, the name originating

from a machinist being a person who uses machine tools to make or modify parts of

a greater system. This name is meant to enforce the belief that software

architectures are moving away from one-size-fits-all data stores and towards data

stores (i.e., tools) built specifically for specialized tasks (e.g., information retrieval,

graphs, analytics, real-time streaming, etc.). The remainder of this chapter focuses

on describing the Machinist framework as a concrete implementation of the

Diamond architecture. The full class diagram for this framework appears in

Appendix B.

 65

7.1.1 Command

The Machinist framework offers implementations of Commands required by

typical CRUD use cases. These Commands encapsulate common behaviors

necessary when persisting and retrieving data from a data store. The

implementation of these commonly occurring usage scenarios will be discussed, in

detail, through the remainder of this section.

7.1.1.1 Persist

Persistence logic in an enterprise application is isolated from the rest of the

application through use of the Repository pattern. The Diamond architecture

recommends that existing and newly developed Repositories be wrapped by a

Command which provides a callback for the execution of Repositories after data

model conversion. The workflow of a persist Command is shown below:

1. Forward convert input for persistence

2. Pass converted input to Repository through a callback for persistence

3. Backward convert Repository result and return the converted result

Although the persist Command does not hold onto input or output as state, it

does require a Converter and a Repository callback during initialization. The

Converter is used to convert domain objects forwards into a form suitable for use by

the callback and wrapped Repository for persisting. The class diagram for the

SaveCommand is shown in Figure 7-1.

 66

Figure 7-1. The SaveCommand class diagram.

An example implementation of the SaveCommand provided by the Machinist

framework is shown below.

Figure 7-2. The Machinist framework SaveCommand implementation.

The code given is straightforward and simply applies the workflow outlined

previously in this section. For implementation purposes, Machinist relies on Google

 67

Guava for Converter and Function implementations. This is not required but

leveraging Guava-provided implementations will allow those who have already

implemented data model Converters or useful Functions to utilize their existing

implementations. The code shown in Figure 7-2 enables the enforcement of

constraints through the use of Java generics. The application developer is required

to provide two generic types when instantiating the SaveCommand, one for input

(I), the other for the converted or intermediate (M) value. The goal of this

enforcement is to align the Converter output with the input required by the

Repository. In this manner, a data model can be adapted to any Repository

signature through conversion and allow the conversion to enforce type safety

through generics. Although not shown separately, the update workflow is typically

the same or similar to the persist workflow.

7.1.1.2 Read

 Reading from a data store presents a variety of challenges that are often

associated with querying. The Machinist framework makes no effort to provide the

user with a single, unified query interface. Instead, the framework relies on each

Repository to understand how to interact with its underlying data store. Through a

Repository callback, any method exposed on the Repository can be accessed by the

Command that holds on to the callback. If needed, custom Converters that

understand how to create complex, data store specific, queries using the data model

provided to the Converter can be implemented. When retrieving objects from a data

store, it is common to only need a forward conversion to generate a key or complex

 68

query. For this reason, Commands responsible for retrieving data from data stores

receive an additional argument during construction, which is responsible for

providing the Command with a way to construct keys or queries for data retrieval.

The enumerated workflow for read Commands is listed below.

1. Generate a lookup key or complex query from input

2. Pass the generated lookup or query to Repository through a callback

3. Backward convert Repository result and return the converted result

The Machinist implementation of this workflow is similar to that of the

SaveCommand code shown in Figure 7-2. The additional constructor argument

provided to the FindCommand is a Guava Function that is responsible for

generating a lookup key or complex query from the provided input. The class

diagram and implementation code is provided in Figure 7-3 and Figure 7-4 below.

Figure 7-3. The FindCommand class diagram.

 69

Figure 7-4. The Machinist framework FindCommand implementation.

The Machinist implementation of the read workflow again uses the Google

Guava Converter and Function interfaces to provide key generation, data model

conversion, and a Repository callback. Java generics are used to provide

enforcement of data types. The FindCommand enforces key or query (ID), input (I),

intermediate (M), and output (O) types. An example of a callback for a

FindCommand is shown on the third page of Appendix A; this callback shows how

the search functionality for the example application is implemented for the

relational data store. Examples of other callback functions appear throughout the

code samples of this dissertation. For example, the solid outline-highlighted sections

of code in Figures 9-5 and 9-7, are instances of commands being configured with

callbacks.

7.1.1.3 Delete

The recommended delete workflow is a simplified read workflow. Delete

implementations require the ability to generate a lookup key or complex query

 70

criteria to locate candidate results, but they do not require data model conversion,

as they do not return results. The delete workflow is as follows:

1. Generate a lookup key or query from input

2. Pass generated lookup to Repository through a callback

The Machinist implemented delete workflow uses two functions, a lookup key

or query criteria generator and a Repository callback. It provides generic type

enforcement for input (I) and keys (ID). The class diagram and implementation is

shown in Figure 7-5 and Figure 7-6.

Figure 7-5. The DeleteCommand class diagram.

 71

Figure 7-6. The Machinist framework DeleteCommand implementation.

7.1.1.4 Many or All

Applications often require the persistence or retrieval of more than one object

at a time. This allows the application to take advantage of batch persist and read

operations provided by data stores. To persist more than one entity at a time, the

Machinist SaveAllCommand implements a modified persist workflow.

1. For each input: forward convert input for persistence

2. Persist batch of converted entities using Repository through callback

3. For each result: backward convert Repository result

4. Return converted results

To retrieve multiple objects, the read workflow is also slightly modified. The

following workflow is appropriate for retrieving multiple results from a data store.

 72

1. Generate lookup key or complex query from input

2. Pass generated lookup to Repository through callback

3. For each result: backward convert Repository result

4. Return converted results

The Machinist implementations for each workflow are given in Figure 7-7

and Figure 7-8 for reference.

Figure 7-7. The Machinist framework SaveAllCommand implementation.

 73

Figure 7-8. The Machinist framework FindAllCommand implementation.

The implementations make use of the same constructs (e.g., Functions,

Converters, and Repository callbacks) as the previous Commands, but they enforce

slightly different generic types, requiring java.lang.Iterables to handle multiple

inputs and outputs.

7.1.2 Runner

To provide flexible methods of invoking commands, the Machinist framework

implements three useful Runners. Runners provided by the Machinist framework

are capable of executing Commands consecutively or concurrently.

 74

Figure 7-9. Machinist framework Runner implementations.

The concurrent implementations provide blocking or non-blocking behavior.

If blocking, the results of each Command will be collected by the Runner and

returned once all Commands have executed (i.e., the ConcurrentRunner behavior).

If a non-blocking Runner is used, such as the

TakeFirstNotNullResultConcurrentRunner, the first available result from any

Command will be immediately returned, canceling any other Commands.

 The default behavior for consecutive Runners is to block until the Command

has completed execution. Machinist provides two consecutive Runners. The

ConsecutiveRunner executes Commands serially, collecting all returned results as it

goes. The ChainedConsecutiveRunner also executes Commands serially but uses

the output of the previous Command as the input for the next Command, eventually

 75

returning the result of the last Command executed. This behavior is helpful when

executing trees of Commands.

7.1.3 Reconciler

Reconcilers are often highly application dependent, and, because of this,

Machinist provides only one basic but useful implementation. The default

Reconciler returns the first non-null result from a set of results. This basic behavior

provides a reasonable “fan-in” behavior for the framework. Many applications will

need to implement more complex implementations (e.g., sort results via a

Comparator, query an additional data source for metadata, etc.). The class diagram

for the FirstNotNullResultReconciler is shown in Figure 7-10.

Figure 7-10. The FirstNotNullResultReconciler class diagram.

7.1.4 Pipeline

Machinist provides a variety of Pipeline implementations that are intended

to be applicable to a wide variety of production usage scenarios. Although the high-

level interface is quite simplistic, the class structure provided by the Machinist

 76

framework offers the user a large degree of expressivity and flexibility through

composition. In this section, we will provide an overview of each Machinist Pipeline

and their anticipated usage scenarios.

Machinist extends the top-level Pipeline interface, creating the

CommandPipeline interface, which adds the ability to hold a collection of

Commands to the top-level Pipeline. The internal structure for this storage is a

java.util.Collection as implemented by AbstractCommandPipeline. Machinist

Pipelines that extend the AbstractCommandPipeline use a java.util.ArrayList as

the concrete implementation, but any java.util.Collection can be used. ArrayList

was chosen as the default to preserve execution order and allow the user to

duplicate Commands if necessary. Figure 7-11 shows the class diagram for the

AbstractCommandPipeline.

 77

Figure 7-11. The Machinist Pipeline class structure.

Pipelines that extend the AbstractCommandPipeline are not required to

conform to the Diamond architecture, as the CommandPipeline does not require the

use of a Runner and Reconciler. The CommandPipeline interface is available to

users of the framework that wish to use the Pipeline and Command concepts

outside of the persistence tier. Omitting the use of Runners and Reconcilers in the

persistence tier is possible but not recommended.

The recommended point of extension for users of the Machinist framework is

the DiamondPipeline. This Pipeline requires a Runner and a Reconciler upon

initialization, which enforce a “fan-out” and “fan-in” behavior with each run of the

Pipeline. This behavior is responsible for the Pipeline’s characteristic shape as

 78

shown in Figure 6-10. The DiamondPipeline class is not abstract and implements

the run() method of Pipeline which simply delegates to the Runner and Reconciler

given at initialization.

Figure 7-12. The Machinist framework DiamondPipeline class structure.

Pipelines that extend the DiamondPipeline are straightforward to develop.

Extension is typically accomplished through composition and is achieved by

initializing a Pipeline with a custom Runner or Reconciler, which is exactly how the

Pipelines of the Machinist framework are implemented. There are a variety of

Pipelines provided by the framework to satisfy commonly encountered production

usage scenarios. Each will be briefly detailed in the following sub-sections.

 79

7.1.4.1 Consecutive Pipelines

Figure 7-13. The ConsecutivePipeline and SimplePipeline class diagram.

The consecutive Pipelines run Commands in consecutive order using the

ConsecutiveRunner. Input is passed to each Command and the Runner collects the

results. The ConsecutivePipeline can be instantiated directly but requires that a

Reconciler be provided through the constructor. The SimplePipeline is an extension

of the ConsecutivePipeline. It utilizes the ConsecutiveRunner but defaults the

Reconciler to the FirstNotNullResultReconciler. The SimplePipeline is the most

basic Pipeline available to an adopter of the Machinist framework.

 80

7.1.4.2 Concurrent Pipeline

Figure 7-14. The ConcurrentPipeline class diagram.

The ConcurrentPipeline invokes Commands simultaneously using the

ConcurrentRunner. By using the ConcurrentRunner, each Command is executed

concurrently, but the Runner will block until all Commands have returned. This

behavior is implemented using the Java concurrency API (e.g.,

java.util.concurrent.Executors, Callable, etc.). The results of the concurrently

executed Commands are collected by the Runner and passed to the Reconciler by

the Pipeline, which is user defined for this Pipeline.

 81

7.1.4.3 Flash Pipeline

Figure 7-15. The FlashPipeline class diagram.

The FlashPipeline was developed to retrieve results via the fastest available

method from any available data store. A typical usage scenario is to concurrently

query a number of data stores that hold similar information and return the first

result available. This behavior, similar to the ConcurrentPipeline, is implemented

using the Java concurrency framework with the primary difference being the

FlashPipeline returns the output of a Command as soon as one is available, without

awaiting the completion of additional Commands. For this reason, the user is not

required to provide a Reconciler, as there will be only a single fastest result or

results set. The Reconciler used by the FlashPipeline serves as an additional null

check but is largely a no-op.

 82

7.1.4.4 Tiered Pipelines

Figure 7-16. The TieredPipeline and SimpleTieredPipeline class structure.

When persisting to multiple data stores, the need to break persistence

operations into tiers occurs frequently. For instance, persisting to a relational

database before any other data stores will assign a uniquely generated primary key

to the data model. Although this is not the only way to define a primary key for

data model lookup, many systems already persist to a relational database, and

doing so before persisting to additional data stores ensures that at least one copy of

the data model has been persisted successfully with the added benefit of assigning a

primary key. Non-traditional classes of data stores, such as key-value and

columnar, frequently make use of composite keys for entity lookup. Already having

 83

an identifier present on the data model allows it to be combined with other

attributes to form such a composite.

The TieredPipeline is a DiamondPipeline with an ancillary method that

allows the addition of a tier. This allows the user to create an arbitrary number of

tiered Commands. In the Machinist framework each tier can either be a single

Command or a Pipeline. If a Pipeline is used, the Pipeline is able to use an

arbitrary Runner and Reconciler, independent of the parent TieredPipeline. This is

an interesting feature of the TieredPipeline as it allows the user to configure

execution behavior per tier (e.g., execute the first tier consecutively, the second

concurrently, etc.). In this way the user may want to ensure that data is written to

critical data stores first and then concurrently, possibly asynchronously, write to

additional stores. The SimpleTieredPipeline provides defaults for the Runner and

Reconciler of the TieredPipeline. The default Reconciler, similar to the

SimplePipeline, is the FirstNotNullResultReconciler. The default Runner is the

ChainedConsecutiveRunner, which uses the output of the previous tier as input for

the next tier.

7.1.5 Decorators

The Machinist implementation was developed to be expressive and

extensible, specifically focusing on the composability of its components. One way

the framework supports these attributes is by providing a series of Decorators for

each architectural component.

 84

Figure 7-17. The Decorator pattern.

The most common component to decorate is the Command interface.

Decorating a Command is straightforward and allows for the modification of

behavior before and after the execution of the decorated Command. Machinist

offers two useful Command decorators: a SourceCommandDecorator and a

TimeCommandDecorator.

7.1.5.1 Source Decorator

In applications utilizing polyglot persistence, it is helpful to understand the

specific data store the data has been retrieved from. This information can be

wielded in a variety of ways such as aiding in debugging and providing the

Reconciler with source metadata to make increasingly intelligent reconciliation

decisions. Providing source information also allows the application to reconstitute a

 85

result or results set that has been split apart and persisted across multiple data

stores (e.g., attribute one in data store one, attribute two in data store two, etc.).

Figure 7-18. The SourceCommandDecorator class diagram.

The Machinist framework provides an extensible abstract class that accepts a

Command during initialization. Extending this class—as the

SourceCommandDecorator does—allows the application developer to easily make

new Decorators for any Command. In the case of the SourceCommandDecorator,

the source is defined during construction of the Decorator. The Decorator then

executes the decorated Command, and the source is set on the result of the

Command execution before the Decorator returns.

7.1.5.2 Time Decorator

Gathering empirical data on the performance of each data store in use by an

application is not always apparent when utilizing multiple data stores. Capturing

 86

this information through the Machinist framework is straightforward. Similar to

attaching a source to a Command result, a Decorator can be used to instrument

Command execution with a timer.

Figure 7-19. The TimeCommandDecorator class diagram.

The TimeCommandDecorator accepts a callback that will be passed the

elapsed runtime, in nanoseconds, of the decorated Command as a method

argument. Using this information it is possible to determine the runtime of each

Command, which is helpful for debugging, performance tuning, and generally

gaining a better understanding of how each data store in an application is

functioning. An interesting use of this data is to empirically show which data stores

perform better for similar or identical tasks. Because the framework offers a

callback, any number of behaviors can be implemented including logging timings or

asynchronously persisting timings to additional data stores for future analysis.

 87

CHAPTER 8: MBox: A Multi-Data Store Inbox

To fully demonstrate the expressivity of the Diamond architecture and its

implementation—the Machinist framework—it is helpful to look at a concrete,

multi-data store application. MBox is a web-based email reader designed to take

advantage of multiple data stores. Implemented in Java, MBox serves as a

functioning example of the Diamond architecture, depending directly on the

Machinist framework. In this chapter we will provide an overview of the MBox

application, showcasing many useful features of the architecture and framework.

8.1 Overview

MBox is a read-only IMAP client developed using core Java and the Spring

Framework (i.e., Spring Boot, Spring Data, and Spring MVC [72]. The user

interface has been developed with React [73], a JavaScript framework developed by

Facebook, and Bootstrap [74], a CSS framework developed by Twitter. A screenshot

of the application is provided in Figure 8-1 below.

 88

Figure 8-1. The MBox application.

The MBox application is modest, as can be seen in Figure 8-1, but also

designed to exercise a variety of complex usage scenarios. It is worth noting the

attributes of each email displayed by the user interface. The following attributes

are required to be available to the user interface to render properly:

• Title - the title of the email

• From address - the email address or addresses of the sender

• To address - the email address or addresses of recipients

• Date received - the date-and time that the email was received

• Content - the text or html content of the email

• Datasource - the datasource that the email was retrieved from

 89

The application also provides search functionality over all fetched emails via

the search input in the upper right of the layout. Searches are executed as the

characters are typed to give the user immediate feedback. The goal of the MBox

application is to provide a non-trivial example of the Diamond architecture through

the use of the Machinist framework. We feel that the feature set contributed covers

many commonly encountered usage scenarios for heterogeneous data-intensive

systems.

8.2 Design and Architecture

The MBox architecture follows an enterprise architecture pattern consisting

of an application, service, and persistence tier. The persistence tier, which had

focused on a traditional Repository pattern, has been enhanced to make use of the

Diamond architecture, through the Machinist framework. The MBox application

was designed to use four independent classes of data stores: relational, key-value,

columnar, and document. The high-level architecture of the MBox application is

shown in Figure 8-2.

 90

Figure 8-2. The MBox architecture utilizing four disparate data stores.

The above architecture implements the full Diamond architecture including

the RepositoryFacade. To utilize multiple data stores, a series of Pipelines were

developed for fulfilling persistence operations (e.g., save, find, find all, search, etc.).

The application architecture follows the pattern shown in Figure 6-12, creating a

Service and RepositoryFacade per domain object.

 91

8.2.1 Data Model

The domain objects available in the MBox application are User and Email.

The class diagram for the data model is provided via UML in Figure 8-3.

Figure 8-3. The MBox data model.

The common parent of the data model is the DomainObject, which is designed

to hold attributes commonly needed for persistence, regardless of data store. Each

object in the data model extends this common parent and adds its own attributes.

The User class is intended to be simplistic and only holds the email address

associated with an IMAP account to enable the fetching of messages from a hosted

 92

email server. The Email model mimics common attributes provided by email

message APIs, specifically MBox uses the javax.mail API.

8.2.2 Persist

The Machinist framework strives to leverage the existing persistence

strategy of the application. The persistence strategy of the MBox application is

implemented through use of the Repository pattern. In this pattern there will be a

Repository per data store per domain object. The advantages of this approach are

numerous, but specifically of note is the composability of this strategy. Architecting

persistence in this way allows for the application to use one or many Repositories

through composition as needed, either by interacting with multiple data stores,

multiple data models, or both. The Diamond architecture allows for the

accomplishment of all of these actions, but, if required, the application can choose to

communicate directly with any data store that is needed through a Repository,

bypassing the architecture (e.g., Pipelines and Commands). This approach results

in a high degree of flexibility, allowing the architecture to adapt to unanticipated

use cases if necessary. Three typical persistence and retrieval scenarios are

implemented in the MBox application for the Email domain object. Each scenario

leverages multiple data stores and independent aspects of the Machinist

framework. We will describe, in detail, the following scenarios: saving Emails,

finding all Emails for a given User, and searching persisted Emails.

For reference, the interfaces for the EmailService, EmailRepositoryFacade,

and underlying Repositories are provided in Figure 8-4 and Figure 8-5. Of note is

 93

the heterogeneity of the underlying Repository method definitions. Coping with

this level of heterogeneity is one of the strengths of the Diamond Architecture.

Converters are used by Commands to adapt the domain model to any signature

required by the underlying Repository.

Figure 8-4. The EmailService and EmailRepositoryFacade definitions.

Figure 8-5. The set of Email Repositories with diverse method definitions.

8.2.3 Save

An MBox Email is persisted to all four available data stores of the

application. To accomplish this using the Machinist framework, a Pipeline

containing a series of SaveCommands is created. Each SaveCommand implements

 94

the persist workflow as described in Chapter 7 and requires the application

developer to implement a data model Converter and Repository callback. A

SaveCommand is constructed per data store. The conceptual architecture with

associated concrete Machinist implementations is given in Figure 8-6 below.

Figure 8-6. The save Email architecture.

As shown above, the individual Repositories are implemented on a per data

store basis and are responsible for encapsulating all behavior necessary for CRUD

operations. The Repository callback wraps direct method calls to the Repository to

provide one level of indirection, which enables the execution of arbitrary behavior,

not only calls to the Repository. The relational and document Repositories utilize

 95

the Spring Data Framework [75] which affords full object relational mapping

capabilities for the data model. The key-value Repository is implemented as an in-

memory hash, and the columnar Repository is implemented using the DataStax

Java Driver for Apache Cassandra [76]. All Repositories implement a save method

with varying method signatures as previously shown in Figure 8-5. To adapt to the

heterogeneous method signatures of these Repositories, Converters must be

implemented. For the Email save Pipeline, one framework provided Converter and

three custom Converters are needed.

The relational and document Repositories accept rich data models for

persistence. Spring Data affords object relational mapping capabilities for these

Repositories. No conversion is necessary for the relational Repository; however, the

SaveCommand constructor requires a Converter so the NoOpConverter is used.

This Converter passes input through without modification, which is a common use

case for object relational mapper-based Repositories that internally understand how

to properly deconstruct and reconstruct a data model for persistence.

The key-value and columnar Repositories each utilize similarly developed

Converters. Generally, in key-value and columnar data stores, a complex and

normalized object graph must be modified significantly to enable effective storage.

Because these data stores do not provide traditional table structures and data

reference capabilities, it is common to de-normalize the data model and embed

referenced structures. This is the approach taken by the MBox application for key-

value and columnar persistence.

 96

Figure 8-7. The EmailKeyValueConverter implementation of the MBox application.

To effectively store an Email in the key-value and columnar data stores, the

Converter is responsible for embedding the associated User during conversion. The

result of the conversion is a hash with a composite key and JSON representation of

the embedded object graph as its value. The composite key is a string generated

from attributes present on the Email (e.g., ID, UID, User ID, User email address,

etc.) joined by a colon. The JSON representation is generated by the Google Gson

library [77] and stored as a string.

Although the document Repository provides object relational mapping

capabilities through Spring Data, a Converter is still needed to effectively store the

data model. The Converter used for the document Repository is necessary to

enhance the data model before persistence. This is done through the addition of

attributes to the data model. For information retrieval tasks, content is often

duplicated and analyzed (e.g., splitting, stemming, n-gram generation, etc.)

differently to fulfill a variety of use cases. In the MBox application, Email content

 97

is typically a complex MIME object such as a HTML document. Although a search

index could be built from HTML, it would likely result in poor search results.

Parsing the content of the Email and storing it separately results in a dramatic

increase in relevant search results.

Figure 8-8. The EmailDocumentConverter implementation of the MBox

application.

The EmailDocumentConverter adds two additional fields to the Email data

model to achieve effective persistence. The first field is used to store the parsed

Email content which is generated by the jsoup library [78]. As previously

mentioned, the parsed content is used for search specific tasks. The second

additional field is the ID of the User associated with the Email. This is necessary to

 98

filter search results (i.e., Emails) by User. The addition of this field allows the

application to store all Emails, regardless of User, in a single index while only

returning results belonging to the current User. This behavior is accomplished via

a filter query.

To execute the four individual SaveCommands, which make use of the

previously described Repositories and Converters, a Pipeline must be created. As

described in the previous chapter, there are a variety of implementations provided

by the framework. For the purposes of the MBox application, a TieredPipeline is

used. This is the optimal Pipeline for this usage scenario because we would like to

ensure the Email is persisted to at least one data store (i.e., relational) before

attempting to persist to additional data stores. Because a relational database will

also assign a unique identifier (i.e., primary key) upon a successful save, we are able

to use this unique identifier where required in other data stores (e.g., composite

keys, document identifiers, etc.).

Figure 8-9. The configuration of the MBox Email save Pipeline.

By using a SimpleTieredPipeline, the Pipeline will be defaulted to make use

of a ChainedConsecutivePipeline and a FirstNotNullResultReconciler. The first tier

is simply the Command used to save Emails to the relational data store. The

 99

second tier is a ConcurrentPipeline that will concurrently persist to the key-value,

document, and columnar data stores. Of note is the type enforcement, through Java

generics, of the Pipeline inputs and outputs: the Pipeline is defined to accept an

Email as input and requires that an Email be provided as output. This ensures

that the Pipeline enforces a similar method signature to the Facade or Service

method that is executing it. In the case of the MBox application, the application

tier will initiate the call sequence by invoking the save method on the Service. The

Service will in turn invoke the save method on the Facade which will then delegate

to the configured Pipeline and result in the persistence of the Email messages.

8.2.4 Find By User

In many applications that allow for the creation of a user account, it is

common to fetch all entities associated with the user account; the MBox application

is no different. When a user authenticates to the application, Emails are fetched

from the server and persisted in the manner described in the previous section.

Each Email is associated with a User before persistence, which provides a data

model capable of retrieving all Emails belonging to a given User. The MBox

application is concerned with providing the optimal performance when retrieving

data, so our choice of storage strategies and Pipelines reflects this consideration.

The high-level architecture used to find all Emails belonging to a given User is

shown in Figure 8-10 below.

 100

Figure 8-10. The find all Emails for User architecture.

The find architecture is similar to the save architecture with a few notable

differences. The architecture makes use of the framework provided

FindAllCommand, which is responsible for implementing the read many or all

workflow described in Chapter 7. In the find workflow, a Function is needed to

produce a key suitable for data store specific lookup. The result of this operation

could be as simple as calling a method that returns the object’s primary key (i.e.,

ID) or as involved as constructing a complex query criteria that accounts for

advanced operations such as paging and filtering. The key generators developed for

use in the find all Emails belonging to a User scenario are responsible for accepting

 101

a User and generating a simple data store specific lookup key. Because the

relational Repository accepts a User in its find method, no key generator is

necessary. The key-value and column key generators create composite keys from a

variety of User attributes (i.e., ID, email address) by joining the attributes together

with colons to create the final lookup key. The document key generator simply

returns the primary key (i.e., ID) of the given User, which will be used to filter the

eventual results set by User. The Converters remain the same as for the save case.

This is one of the advantages of encapsulating all behavior pertaining to data model

conversion in discrete components. Having this behavior spread throughout a

Repository or set of Repositories would negatively impact reuse. In fact, many of

the Converters developed by the application make use of existing key generators

through composition to generate composite keys during forward conversion in

preparation for persistence.

The second notable difference between the save and find architectures is the

Pipeline used. For retrieving results in the most efficient manner available, the

framework provides the FlashPipeline. This Pipeline concurrently executes its

Commands and awaits the first non-null result or results set returned. Once the

result has been received, all Commands still executing are cancelled. The

FlashPipeline is ideal for MBox because the application is not opinionated about

where a result originates from and the application makes a conscious choice to

duplicate all information required by the user interface in each data store. The

resulting query operation always retrieves results from the fastest available data

 102

store, even if the fastest store changes from query to query. This desirable behavior

is easy to achieve using the Diamond architecture. The code to accomplish this

behavior is shown in Figure 8-11.

Figure 8-11. The configuration of the MBox find Emails by User Pipeline.

8.2.5 Search

Search has come to be an expected feature of many applications. MBox

implements comprehensive search across multiple data stores, again using the

Diamond architectural style. However, not all data stores lend themselves to being

suitable for search tasks. Document is a class of data stores that typically excel

with regard to information retrieval tasks. To enable full-text search over a user’s

Emails, the MBox application utilizes the capabilities of the document and

relational data stores. In a production application, a relational data store is

unlikely to perform as well as a document store for search tasks. Using both classes

of stores in this application is intended to show the flexibility of the architecture,

and additionally demonstrate a usage scenario where the quality of results are able

to degrade slightly to provide durability and optimal performance. The high-level

search architecture is shown in Figure 8-12 below.

 103

Figure 8-12. The search Emails for User architecture.

 As the diagram indicates, the search architecture only utilizes two of the

four available data stores. The EmailService and EmailRepositoryFacade both

provide search methods that take a query string as a method argument. This query

is passed to the Pipeline as input, enforced by Java generics as a string, and

requires no conversion before being given to each Repository.

Figure 8-13. The configuration of the MBox search Pipeline.

 104

To enable proper search functionality, the application is again utilizing a

FlashPipeline to optimize the persistence tier for the best performance possible

among the available data stores. If the application would have instead optimized

for improved precision or recall of search results, a ConcurrentPipeline, which

blocks until all Commands have executed and returned, with a custom Reconciler

might have been used. To increase precision, a custom reconciliation strategy

should be implemented to apply an order of precedence to the results set; for

instance, the Reconciler could be implemented to prefer results from the more

search capable document store. Increasing recall could be accomplished by creating

a reconciliation strategy that merges all results from both data stores.

8.2.6 Decorators

The framework-provided Decorators are used throughout the MBox

application, most notably to attach a data source to a result. The data source

attribute is displayed in the footer of each Email presented by the user interface, as

seen in Figure 8-1. For debugging purposes, the TimeCommandDecorator is also

used frequently to compare and contrast the performance of each data store on a

task-by-task basis. Having empirical timings of such operations is easily achieved

using the Machinist framework. The code required to decorate the Commands used

by MBox is provided below.

 105

Figure 8-14. The MBox application Command Decorators.

Use of the Decorators is straightforward and easily extended. The callback

required by the TimeCommandDecorator, for our purposes, simply prints the

provided timings to standard out. A more advanced implementation could keep

track of timings for other scenarios such as determining what configured Command

would be most efficient to execute based on historical runtimes, avoiding the need to

execute all configured Commands when there is a high likelihood the same

Command will always return first.

 106

CHAPTER 9: Evaluation

In this chapter we present the evaluation of our architecture using a variety

of common scenarios encountered by heterogeneous data-intensive applications.

The developed framework, Machinist, and associated application, MBox, are used to

perform the evaluation.

9.1 Overview

 The ideal architecture for persistence in heterogeneous data-intensive

systems will result in accessible and flexible polyglot persistence. In addition, the

implementation of an associated framework will not hinder attributes afforded by

the underlying, large-scale data storage systems. These systems are designed to

offer scalability, availability, and durability with a consistent focus on performance.

The ideal architecture must minimize the overall effort required to adopt large-scale

data stores without conceding the desirable attributes of these technologies.

By specifically leveraging the author’s professional background as the co-

founder and Chief Technology Officer of a large-scale data-intensive software

startup, an independent software consultant, a software engineer at a publicly

traded company, and an academic research assistant, we have the necessary

experience to discuss the constraints present in highly demanding, large-scale

software environments. Each existing system the author has contributed to

leverages state-of-the art tools from many computer science disciplines outside of

 107

software engineering, including distributed systems, programming languages,

machine learning, natural language processing, and human-centered computing.

9.2 Approach

The approach taken for the evaluation of the Diamond architecture and

associated implementation is that of a combined analytical and quantitative nature.

We will enumerate a variety of scenarios that commonly occur within heterogeneous

data-intensive systems. For each scenario, we will be able to compare and contrast

our approach, through the use of our architecture and framework, to a more

traditional approach that does not utilize our architecture. We will use the

functionality of the MBox application to constrain each evaluation scenario, putting

each usage scenario in the context of an existing application’s architecture to cater

to a familiar problem domain and data model.

9.3 Assumptions

To analytically evaluate the Diamond architecture against more traditional

approaches to polyglot persistence, we must begin by describing our initial

assumptions of both architectures. Our focus will be on the architectural changes

that must occur in the architectures to fulfill each scenario. For the sake of this

evaluation, we will assume that the data stores in use are already available to the

application developer (e.g., data store deployment, schema definition, etc.). Both

architectures will be assumed to be operating on the same data model, that of the

MBox application which is composed of a User and a set of Email messages.

 108

The initial starting point for each approach (three-tier vs. Diamond) will be a

full architecture implementation that makes use of a relational data store. The

traditional enterprise application architecture will consist of application, service,

and persistence tiers. The service and persistence tiers make use of Repository

implementations that provide save and find operations. The Diamond approach

will consist of application, Service, RepositoryFacade, Pipeline, and Sub-Repository

components for a relational data store. It is also assumed that the Diamond

approach will have existing implementations for save and find operations against

this data store. The initial conceptual architectures are provided in Figure 9-1.

Figure 9-1. The initial evaluation systems using a Diamond architecture (left) and

a traditional three-tier architecture (right).

 109

As can be seen above, for a single data store there is some amount of

additional work required by the Diamond architecture. The Diamond architecture

requires a Pipeline for CRUD-based methods present in the service tier (e.g., save,

find, find all, search, etc.). Each of these Pipelines requires a Command that in

turn requires a Function (i.e., key or query generator for finds), Converter, and

Repository. The addition of the Pipeline and its components, as well as the

RepositoryFacade, is additional work in comparison to the traditional architecture.

However, this effort is similar to the work of developing a system in anticipation of

the system being run using multiple threads or on multiple servers. Up front effort

is required even if the software is initially running in a single thread or on a single

server, but that effort results in measurable savings when the system is later

scaled. The implementation code for both architectures is given in Appendix A.

9.4 Evaluation Scenarios

The remainder of this chapter will discuss a number of evaluation scenarios,

which contrast the advantages and disadvantages of the approaches contributed by

the architectures. As a result, we contribute a thorough evaluation of our work.

9.4.1 Additional Data Store

As an application transitions from a homogeneous to a heterogeneous

architectural style, it will require the ability to add an additional data store to its

existing architecture. The need for an additional data store can arise from a variety

of requirements including specialization, such as information retrieval tasks,

 110

performance, or redundancy, among others. Using the two initial architectures, we

will discuss the steps required to add an additional data store to both architectures.

In a traditional enterprise architecture, there are multiple possible points of

extension for the addition of a data store, the first being the existing Repository.

The existing Repository already isolates the details of persistence for a single data

store from the service tier, making the Repository a natural point of extension. The

second reasonable point of extension is the existing service tier. Selecting the

service tier as the point of extension is also reasonable as it allows the Repository to

continue to focus on encapsulating the persistence details of a single store. Because

the MBox application is using Spring Data for its relational Repository, extending

existing Services (i.e., EmailService) requires the least amount of effort. A Spring

Data Repository abstracts and obfuscates many of the implementation details

associated with relational persistence, making it difficult to adapt for polyglot

persistence. It is far easier to create additional Repositories than enhance the

existing Spring Data Repository. Applying this reasonable strategy, the following

steps are required to add an additional data store to our traditional architecture.

1. Create an additional Repository for the new data store

2. Inject the new Repository into existing Services

A new Repository must be created to encapsulate the persistence details of

the store and then added to the existing service tier for later use.

 111

Figure 9-2. Three-tier architecture with two data stores.

The steps required to prepare the Diamond architecture for an additional

data store are very similar to the steps required to prepare a traditional, three-tier,

architecture. It is helpful to point out that we will compare the details of actual

persistence scenarios (i.e., making use of the additional Repository) later in this

chapter. For now, we wish to focus on the amount of work required to prepare the

architectures for an additional data source without explicitly invoking the

additional data source (e.g., save, find, find all, etc.). The steps for additional data

store inclusion required by the Diamond architecture are listed below.

1. Create an additional Repository for the new data store

2. Ensure the new Repository is available for use by existing Pipelines

 112

As with the traditional approach, only two high-level steps are required by

the Diamond architecture, and they are similar in effort. Allowing the Repositories

to be discovered by the service tier or existing Pipelines can be done by directly

instantiating the Repositories. However, in an enterprise software organization,

this is likely to occur through an inversion of control framework, such as the Spring

Framework, which provides access to the Repositories through an application

context (i.e., a global context of instantiated classes). Regardless, the Diamond

architecture requires less modification than the traditional architecture since the

service tier is already configured to invoke Pipeline Commands via the

RepositoryFacade (requiring no Service refactoring). The new data source will

automatically be invoked correctly as soon as the Pipelines are updated to include

the new Commands that read and write to the new data store through the new

Repository. The prepared two data store Diamond architecture is shown in Figure

9-3 below for reference.

 113

Figure 9-3. Diamond architecture with two data stores.

9.4.2 Persist Data to Additional Store

When adding an additional data store, the first step is to enable the

persistence of data to the new store. In a traditional three-tier architecture, as

described in the previous scenario and shown in Figure 9-2, an existing Service will

be required to take on additional responsibilities. The following steps are required

by the traditional architecture to enable persistence to a newly available data store.

 114

1. Create save method on new data store Repository

2. Add data model conversion code to the existing Service save method

3. Invoke each Repository

4. Collect results of each Repository invocation

5. Implement the reverse data model conversion per Repository result

6. Add additional logic to Service to reconcile multiple Repository results

The steps listed above would be added to the save method of the

EmailService in the traditional architecture. Doing so requires the refactoring of

the save method to adapt to multiple data stores, converting, invoking, and

reconciling with different behavior for each store within a single method. The

implementation of the three-tier architecture EmailService save method is below.

 115

Figure 9-4. Traditional architecture EmailService save method for two data stores.

Figure 9-4 explicitly shows the steps required to achieve polyglot persistence

in a traditional architecture across a relational and document data store. Each line

style represents a different behavior required to enable polyglot persistence. The

solid outline sections show interactions with the underlying traditional, per data

store, Repositories. The cross-hash (i.e., x) annotation highlights code associated

with data model conversion, both forwards and backwards. Finally, the dashed

annotation shows the code necessary to provide reconciliation of the multiple results

returned by each Repository. Of note is that adapting each of the highlighted

sections of code to accommodate an increasing number of data stores is non-linear.

 116

Additional data stores will require additional code across all highlighted sections.

This additional code may need to be intermingled throughout the existing method to

provide the necessary functionality, as is shown by persisting to the relational data

store first to assign a primary key for use later in the method (i.e., solid outline

sections). Additionally, conversion and reconciliation code (i.e., cross-hash and

dashed sections respectively) is arbitrarily complex and will result in effort-

intensive refactorings as the number of data stores increase.

The Diamond architecture provides constructs for many of these behaviors.

The steps required by the Diamond architecture are listed below.

1. Create additional save method on data store Repository

2. Implement a new data model Converter for the data store

3. Add a new SaveCommand to the existing save Pipeline

The Machinist framework allows the user to utilize full implementations of

common constructs encountered during the development of heterogeneous

persistence tiers. Leveraging these components during data persistence results in

clear isolation of concerns. The code for adding an additional data store to the save

Pipeline using the Machinist framework is given below.

 117

Figure 9-5. Diamond architecture Email save Pipeline for two data stores.

Similar to Figure 9-4, Figure 9-5 explicitly shows the code required to achieve

polyglot persistence through utilization of the Machinist framework. In contrast to

the traditional approach, the Diamond architecture scales linearly through the use

of its architectural components. Adding an additional data store to an application is

accomplished by adding an additional Command to an existing Pipeline (i.e.,

enforcing a linear relationship between Commands and data stores). All

conversion, Repository, and reconciliation behavior (i.e., cross-hash, solid, and

dashed highlights respectively) is encapsulated throughout the architecture,

enforcing the single responsibility principle and minimizing non-linear growth as

additional persistence technologies are adopted. This characteristic gives the

Diamond architecture a significant advantage when adapting an application to a

large number of data stores.

9.4.3 Retrieve Data from Additional Store

After the successful persistence of data to a newly available store, the need

for data retrieval becomes apparent. In a traditional architecture, the service tier

requires modification to take full advantage of the new store. Below, we list the

 118

steps required to enable an existing service tier to retrieve data from an additional

data store.

1. Add additional find method to data store Repository

2. Add code to generate key from data model

3. Invoke each Repository

4. Collect results of each Repository invocation

5. Implement data model conversion per Repository result

6. Add additional logic to reconcile multiple Repository results

Again, the existing find Service method must be refactored to accommodate

an additional data store. The refactored method is given below. Although in our

implementation we are leveraging Spring Data to enable data model conversions

automatically, this is not the case with other data stores and would result in a more

complex refactoring.

Figure 9-6. Traditional architecture Service find method for two data stores.

 119

At this point, there is code duplication between the save and find data model

conversion, and there is likely to be duplication between the invocation, collection,

and reconciliation strategies of each method. The Diamond architecture requires

the following steps for the identical scenario.

1. Create additional find method on data store Repository

2. Implement a data model key generator Function for the data store

3. Add a new FindCommand using the key generator and existing Converter

to the existing find Email Pipeline

The Diamond approach again leads to clear isolation of concerns and allows

the user to leverage the existing data model Converter from the persistence

scenario. The code to add an additional data store to the find Pipeline is given

below.

Figure 9-7. Diamond architecture find Pipeline for two data stores.

9.4.4 Split Data Model Across Data Stores

Given a complex data model, it can be beneficial to store different aspects of

the data model in a disparate number of data stores. One common example of this

scenario is when a data model holds on to a large amount of content (e.g., HTML

 120

content body, encoded media data such as a large photo or video). Storing the

metadata for the data model in a different store than the content can lead to

performance advantages. Splitting the data model in the traditional architecture

again requires the modification of the existing Service methods to accommodate the

following steps.

1. Service save method must be modified to select only needed attributes off

of data model before invoking each Repository

2. Service find method must be modified to query each store for a given

attribute

3. Service save method must be modified to reconstruct data model from

results

4. Service find method must be modified to reconstruct data model from

results

In the traditional architecture, any method that interacts with the data store

through the use of the data model (likely most methods, excluding calls like count

queries) will require modification if the data model must be split after the initial

persistence tier architecture is implemented. The Diamond architecture requires

the steps listed below.

 121

1. Modify existing Converters to not pass through all attributes to

conversion result

2. Add reconstitution logic to existing Reconciler

The advantage to the Diamond architectural approach is, by modifying the

existing Converters to only pass through certain attributes on forward conversion

(e.g., through predicates or other means), the split is accomplished for all usages of

the Converters. The same is true of the reconstitution behavior in the Reconciler.

A user of the framework is able to leverage the isolation of concerns provided by

these architectural components. Although here we are evaluating a Service with

only a few methods, updating a larger traditional-architecture-based system to

support this type of change would quickly become overwhelming and error prone.

9.4.5 Per Data Store Data Model Attributes

Data stores vary widely in their methods of data storage. To effectively

utilize a purpose-built data store, the data model is often required to adapt to the

needs of the data store which, in some cases, requires the addition of data model

attributes on a per data store basis. The MBox application, described in Chapter 8,

was required to add additional attributes to its data model for the document store to

provide full text search across a user’s Emails. A traditional architecture would

require the refactoring of the Service’s save method to the workflow shown below.

 122

1. Existing Service save method must be modified to add additional

attributes to data model before Repository invocation

2. Existing save method must be modified to recognize attribute or disregard

attribute when backwards converting repository result

3. Existing find method must be modified to recognize attribute or disregard

attribute when backwards converting Repository result

The work required per data store to modify the traditional architecture to

support additional data model attributes is similar to the split data model scenario.

Any location in the Service that provides the data model to a Repository will need to

add additional attributes before doing so. This implies modifying the Service

anywhere that attributes could be used including all save and find methods. The

Diamond architecture requires similar modifications but provides existing

constructs to do so, thus isolating the Service from any changes.

1. Modify existing Converter to add additional attributes

Again, utilizing the Converter construct allows the developer to make a

change in a single place without the need to refactor an existing Service method.

This type of isolation allows for changes to be made throughout the persistence tier

without affecting the rest of the application.

 123

9.4.6 Concurrent Persistence

An efficient application will not want to wait to serially execute each

persistence operation on every Repository. Significant performance improvements

in polyglot persistence can be achieved by concurrently persisting across multiple

data stores. Modifying the traditional architecture requires the enhancement of

many aspects of the existing save method. The existing conversion and

reconciliation code could be used unmodified, but the code responsible for invoking

each Repository must be refactored.

1. Create a thread pool

2. Wrap the relational Repository call in a thread

3. Wrap the additional data store Repository call in a thread

4. Execute each threaded Repository call concurrently

5. Block until all Repository threads have returned results

Again, in the simple case, a single instance of this refactoring is not an

abundant amount of work, but within a larger architecture, it could quickly become

daunting. The Machinist approach is much simpler.

1. Switch the existing save Pipeline with the ConcurrentPipeline

 124

As requirements change, the method in which Commands are executed can

be easily changed using the Diamond architecture, allowing the developer to

experiment with different styles of Command invocation to determine which style

best suits their application’s needs.

9.4.7 Tiered Persistence

Consecutive or concurrent persistence is adequate for many environments,

but for some applications it is necessary to persist in tiers. The canonical use case

for this type of behavior in a polyglot persistence environment is the need to ensure

that an action has occurred before executing additional actions. In the context of

persistence, an application may want to ensure that a data model is successfully

written to a relational store before being persisted to additional stores. This

provides a simplistic form of data integrity by forcing the data to be placed

successfully in one data store before being written, possibly asynchronously and

concurrently, to additional stores. In the traditional architecture, the Repository

invocation behavior of the Service’s save method must be modified to achieve this.

 125

1. Group Repository calls and associated conversion code in arbitrary order

2. Write method of execution per group of Repository call groups (concurrent,

consecutive, etc.)

3. At the successful execution of each group

a. Convert results

b. Reconcile to one result

4. If not the last group, pass result to next group and execute

The code required to accomplish this in a traditional architecture is largely

dependent on how many data stores the architecture is utilizing. As we are focused

here on the work required to change the invocation methods of the Repositories,

using many data stores will result in large amounts of code that suffers from the

drawbacks described in the previous persistence scenarios such as lack of code reuse

and major refactorings. Using the Pipeline construct from the Diamond

architecture requires minimal steps.

1. Switch existing Pipeline implementation for TieredPipeline

2. Add each Command or set of Commands to a tier as needed

The Machinist framework provides a TieredPipeline implementation that can

be swapped for any existing Pipeline. Creating the TieredPipeline requires the

developer to perform the additional work of grouping commands into sub-Pipelines

 126

and adding them as tiers to the parent Pipeline. However, the extra effort expended

on creating sub-Pipelines provides the application developer with a flexible

approach to tiered persistence which has many uses including defining

transactional boundaries and ensuring data integrity while simultaneously being

conscious of performance.

9.4.8 Retrieve Fastest Available

Retrieving a result from all available data stores is important when the data

model has been split across the data stores. However, in situations where the data

has been duplicated instead of split, it is not necessary to wait for each store to

return the same result. When the data model has been duplicated across many

available data stores, the application would like to take the fastest result without

concern for where it was retrieved. Accomplishing this in a traditional architecture

would require the refactoring of the invocation of the available Repositories.

1. Create thread pool

2. Wrap each Repository call in a thread

3. Execute each threaded Repository call concurrently

4. Take the result of the first thread to return

5. Cancel all outstanding thread executions

The Machinist framework provides a Pipeline for this exact purpose; thus,

there is again only one change required for the Diamond architecture.

 127

1. Switch existing Pipeline for FlashPipeline implementation

The FlashPipeline implementation handles the details of non-blocking

concurrent execution for the application developer. Changing an existing

consecutive or concurrent Pipeline usage to a FlashPipeline involves changing a

single line of code. Doing so ensures that, even if the data store that performs the

fastest from request to request varies, application code remains unchanged.

9.4.9 Enable or Disable Data Store

As a business experiences growth, the software products they produce adapt

incrementally. It is often helpful for application developers to test multiple

deployments of similar data stores or the same data store with varying

configurations, resulting in the need to quickly disable or re-enable the code paths

responsible for utilizing a data store. In both architectures, the application

developer has two relatively basic options; they can simply comment out the code

path, or they can surround all code paths that are using the data store with a

conditional check of a property that indicates if the data store should be used at the

present time.

In the traditional architecture, commenting or removing all code used to

interact with a data store (i.e., converting, Repository invocation, result

reconciliation) would be error prone and time consuming. The better approach

would be to wrap each of the functions with a conditional statement to facilitate the

 128

enablement or disablement of a store through a property. This style of

programming is not ideal and results in errors and a tremendous amount of work

for the developer.

The Diamond architecture lends itself to such a usage scenario. Because

Commands contain the requisite knowledge for interfacing with a specific data

store, the developer can simply remove them from inclusion by the Pipeline by

commenting out or removing the Commands. Additionally, because the Pipeline

controls which Commands are given to the Runner for execution, a Pipeline can be

decorated or extended to only pass Commands associated with enabled data stores

to the Runner.

9.4.10 Results Reconciliation

In any application where multiple data stores are being utilized, the

application is being constantly presented with results from each data store.

Determining which results to return to the rest of the application can be a complex

task. As additional data stores are added, the result reconciliation logic must be

adapted in all locations where results are reconciled. Changing the reconciliation

logic in a traditional architecture requires:

1. The modification of each method that handles results from multiple data

stores: at a minimum, the find and save methods in our example

 129

The Diamond architecture provides the Reconciler construct to encapsulate

this behavior. Common behaviors, such as taking the first non-null result from a

set of similar results, can be easily implemented by using the provided

FirstNotNullResultReconciler. For this example scenario, the Diamond

architecture requires a single change.

1. Add additional behavior to the existing Reconciler

This modification would change the reconciliation behavior of every Pipeline

making use of the Reconciler.

9.5 Quantitative Features of the Evaluation

To evaluate the overall effort required by architectures for data store

adoption it is helpful to provide a quantitative comparison between the two. To

enable this comparison we again make use of the MBox application. The final

application provides a full implementation of the EmailService interface for each

architectural approach. The three-tier architecture provides an EmailService

implementation that contains all the behavior required to save Emails, find Emails

by a given User, and search Emails. The Diamond architecture implementation

configures the necessary Pipelines for the same functionality outside of the

EmailService and ensures the Pipelines are available to the RepositoryFacade,

which in turn is invoked by the Diamond EmailService. Both implementations

 130

utilize four disparate classes of data stores: relational, document, key-value, and

columnar. The line of code counts for each approach is provided in Table 9-1.

Traditional Diamond

Component Lines of Code Component Lines of Code

save(email:Email) 37 SavePipeline 34

save(emails:Collection) 71 SaveAllPipeline 16

findByUser(user:User) 40 FindByUserPipeline 16

search(query:String) 9 SearchPipeline 9

 Table 9-1. Line of code counts for traditional (left) vs. Diamond (right)
EmailService implementations utilizing four data stores.

The line of code counts for the traditional approach was derived from the

ThreeTierEmailService implementation. The derived counts of the Diamond

architecture were taken from the custom classes required to configure the necessary

Pipelines and provide conversion of the MBox data model (i.e.,

EmailDocumentConverter, EmailKeyValueConverter, EmailColumnarConverter,

EmailKeyValueKeyGenerator, EmailDocumentKeyGenerator). The total line of

code counts for each approach is provided in Table 9-2 below.

 131

Traditional Diamond

157 LOC 75 LOC

52% line of code reduction

Table 9-2. Total line of code disparity between the traditional and Diamond
architectural approaches.

As is shown by the line of code comparison the Diamond architectural

approach to polyglot persistence results in significant code savings for the

persistence tier developer. When considered in combination with the analytical

evaluation conducted previously in this chapter the Diamond architecture provides

an architecture that minimalizes the complexities and overall effort associated with

adoption of numerous specialized data storage technologies.

9.6 Evidence of Usefulness for Data Store Experimentation

When adopting new data stores a developer will often experiment with a

variety of specialized technologies. Using the Diamond architecture the application

developer can not only more easily add numerous data stores to their existing

application but can also easily experiment with the available data stores once they

have been integrated. Experimentation leads to a better understanding of how

data stores compare to one another in terms of performance, durability, and

flexibility as well as an overall understanding of how the greater application

benefits from the utilization of multiple data stores. The MBox application greatly

benefitted from this type of exploration, primarily through the utilization of the

 132

TimeCommandDecorator, which provided empirical timings of data store

operations. An example log output of a typical user workflow is given in Figure 9-8.

Figure 9-8. Log output of MBox application.

The log output shows the empirical timings, in milliseconds, of the four

disparate data stores utilized by the MBox application (i.e., relational, document,

 133

key-value, and columnar). The log output shows the user login, Email fetch from

IMAP, Email persistence across all four data stores, and Email search. Beginning

at 2015-04-10 10:27:58.477 the MBox application temporarily shutdown the

document store to demonstrate the durability of the Diamond approach. During

this time period the user continued to issue searches against the system that were

fulfilled solely by the relational store. At 2015-04-10 10:32:49.550 the document

store is restored to full functionality and begins to again service requests. Once the

cache of the document store is again primed (2015-04-10 10:32:51.839) it can be

seen that it returns all Emails for a User over 10 milliseconds quicker then the

other three data stores. While these performance results are indeed interesting

they additionally serve to highlight how valuable data store experimentation can be

to understanding what scenarios and conditions result in the effective utilization of

a data store within the persistence tier and what system attributes propagate

throughout the greater application.

9.7 Results

The results of our evaluation show the many advantages the Diamond

architecture has over the traditional approach. Although, the Diamond architecture

does require some amount of upfront work to implement, it is similar in scope to

developing for multi-threaded or multi-server environments. The results show that,

through many common polyglot persistence scenarios, the implementation of the

traditional three-tier architecture requires up to 50% more work than the

implementation of the Diamond architecture utilizing the Machinist framework.

 134

Additionally, the Diamond architecture limits greater than linear growth in

persistence code by providing a one to one mapping between Commands and data

stores. This strategy allows the developer to better prepare the persistence tier of

their application for increasing numbers of data stores. The major lessons learned

from our evaluation are:

1. Isolating all persistence responsibilities within the Service tier is a poor

approach that

a. Results in too much responsibility for a component that is intended

to focus solely on business logic.

b. Ruins testability of the Service.

2. Isolating the persistence workflows within Commands allows for reuse by

limiting behavior duplication in Services.

3. Conversion code (e.g., data model conversion, selective attributes,

additional attributes) is difficult to keep isolated in a Service method.

Using a Converter encapsulates these responsibilities and ensures single

points of code change.

4. Methods of Repository invocation are diverse and subject to change.

Changing the Pipeline implementation is far easier than refactoring a

Service method.

 135

5. Diamond architecture Service and Facade methods are simplistic, often

only invoking the run method of a Pipeline. This facilitates testability

and maintains the focus of the Service on business logic

6. Creating new Functions (i.e., key generators and callbacks), Converters,

Runners, Reconcilers, and Pipelines is easily accomplished through

composition and Decorators. The same is not possible through Service

extensions.

The level of effort required to provide persistence without the Diamond

architecture and Machinist framework for two data stores has been demonstrated to

be substantial. Adding additional stores using the traditional architecture would

also be substantial and would quickly become unmanageable. Maintaining a

Service that must coordinate for N data stores is incredibly complex; however, the

Diamond architecture was designed specifically to fulfill this task. The level of

effort to add an additional store is the same as described in our evaluation scenarios

using the Machinist framework. Through this design, we have provided an

architecture capable of adapting to varying numbers and types of data stores in a

given system over time. Furthermore, the types of small, isolated changes required

by the Machinist framework to work with a new data store significantly reduces the

costs typically associated with task. This reduction, in turn, significantly increases

the accessibility of working with multiple data stores. Since the cost to entry has

been significantly reduced, developers can feel more confident that “the leap” to

 136

experiment with or adopt a new data store is one that is manageable and safe as

opposed to error-prone and dangerous. Finally, the architecture developed provides

the scalability, availability, and durability required to meet the expectations of

current users of large-scale, heterogeneous data-intensive systems.

 137

CHAPTER 10: Future Work

The movement away from one-size-fits-all systems and towards systems

composed of specialized data storage technologies will grow and result in future

research concerning architectural patterns for large-scale heterogeneous systems.

A future direction for work in this research area is data model decomposition and

reconstitution. Currently, the application developer is responsible for designing

how to decompose the data model for effective storage by each data store. The

application developer is also responsible for implementing the details of data model

reconstitution after retrieval from multiple stores. These complexities could be

isolated from non-expert users or generated automatically based on best practices or

other information inferred from the code base. As an example, a successful

implementation would allow the application developer to declaratively specify what

data store to persist the data model to without needing to also determine how best

to store it. Such a system would drastically increase accessibility of these

technologies by limiting the accidental complexities associated with data model

conversion. Research is needed to understand how to ensure that data model

Converters understand data model versioning and the underlying data store

migrations that support them. An automated data model Converter generator could

greatly aid these tasks.

An additional research direction would focus on the creation of a federated or

imperial query API for data stores. It is overwhelming to learn the details of all of

 138

the available data store query technologies because they vary drastically from high-

level languages (e.g., SQL, CQL, Cypher, Gremlin) to extensive programming

paradigms (e.g., MapReduce). A query framework that could provide an extensible

abstraction for underlying query technologies would revolutionize accessibility for

data store technologies. This research could further be extended to enable the

automatic detection and execution of a query on the best system for the task.

Enabling this type of query intelligence would minimize the expertise required to

implement the individual Repositories leveraged by the Diamond architecture.

Utilizing multiple data stores results in a variety of data integrity issues for

the application developer. Although these issues exist in most modern software

companies today, increasing the number of places that data is stored is likely to

intensify these complexities. Providing future direction on how to deal with these

issues in highly heterogeneous environments would have a major impact on this

style of application architecture. Ideally, the architectural constructs provided by

this dissertation could serve as the foundation for this work. A series of Pipelines

and Commands could be developed to help the persistence architect understand

where data was placed and, in the most ideal scenario, where data should be placed.

This type of tool support will provide incredible value to organizations adopting

heterogeneous architectures. The Commands and Pipelines provided through the

Machinist framework are useful but basic in comparison to their full potential.

A final research area is the challenge of data integration at scale.

Integrating data from disparate sources is difficult and at the core of the promises

 139

made by “Big Data”. Stonebraker suggests the following techniques for data

integration at scale: human involvement, transformations, entity consolidation,

cleaning, and wrappers [69]. This is likely another area where one-size does not fit

all, and data integration technologies will need to utilize many techniques to

achieve success. The Data Tamer System [79] which works to automate the data

integration process, is one such example. Future work in architectural patterns will

need to provide for data integration systems that process large amounts of disparate

data sources and produce canonical forms of data for storage. Leveraging the work

of the Data Tamer System, intelligent and even run-time configured Converters,

Commands, and Pipelines could be built to help adapt integration strategies to

multi-data store environments. Integrating these technologies with heterogeneous

architectures is important because the canonical representation of an object is likely

to be formed through an iterative process as new knowledge is discovered over time.

Aspects of the architecture that interact directly with the data model may need to

be notified of changes made by the data integration system. For example, an

intelligent data model decomposition strategy may need to incorporate knowledge of

a new attribute or type added by the data integration system. Research in this area

could result in systems capable of storing and integrating vast and disparate data

sources without the need for time-consuming development tasks.

 140

CHAPTER 11: Conclusions

The contribution of this dissertation is the implementation of an architecture

for the enablement of polyglot persistence. The Diamond architecture provides a

series of constructs that allow a traditional enterprise architecture (i.e., three-tier

architecture) to adopt an unknown or varying number of data stores. In this way,

we contribute to the field of software engineering the design, implementation, and

evaluation of an architecture useful for polyglot persistence. The resulting software

enables application developers to adopt and/or abandon large-scale data stores

without overwhelming complexity. Minimizing complexities in polyglot persistence

makes this style of architecture accessible to more software engineers which, in

turn, will aid the transition to a multitude of systems with a heterogeneous style of

architecture that are not built solely upon one-size-fits-all technologies. The

experience gained through the design and implementation of this polyglot

persistence framework will enable future recommendations on how to best develop

tools and techniques for this new architectural era.

 141

REFERENCES

[1] S. Few, “Visual Business Intelligence – If Big Data Is Anything at All, This Is
It,” Perceptual Edge, 18-Aug-2014. [Online]. Available:
http://www.perceptualedge.com/blog/?p=1955. [Accessed: 14-Mar-2015].

[2] K. Zickuhr and A. Smith, “Digital differences,” Pew Internet, Washington, DC,
Apr. 2012.

[3] “Gmail - Free Storage and Email from Google.” [Online]. Available:
https://www.gmail.com/intl/en/mail/help/about.html. [Accessed: 14-Mar-2015].

[4] “Welcome to Facebook - Log In, Sign Up or Learn More,” Facebook. [Online].
Available: https://www.facebook.com/. [Accessed: 14-Mar-2015].

[5] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” University of California, Irvine, 2000.

[6] D. Crockford, “JSON,” JSON, 2002. [Online]. Available: http://www.json.org/.
[Accessed: 20-Mar-2015].

[7] E. T. Bray, “RFC 7159 - The JavaScript Object Notation (JSON) Data
Interchange Format,” Mar-2014. [Online]. Available:
http://tools.ietf.org/html/rfc7159. [Accessed: 14-Mar-2015].

[8] M. Cox and D. Ellsworth, “Application-controlled demand paging for out-of-core
visualization.,” in Proceedings of the 8th conference on Visualization, Phoenix,
AZ, USA, 1997, p. 235–ff.

[9] G. E. Moore, “Cramming More Components Onto Integrated Circuits,”
Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.

[10] “VLDB Endowment Inc.” [Online]. Available: http://www.vldb.org/. [Accessed:
16-Mar-2015].

[11] “Star schema - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Star_schema. [Accessed: 16-Mar-2015].

[12] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-stores: how
different are they really?,” in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, 2008, pp. 967–980.

 142

[13] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker, “OLTP through
the looking glass, and what we found there,” 2008, p. 981.

[14] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E.
Lau, A. Lin, S. Madden, E. O’Neil, and others, “C-store: a column-oriented
DBMS,” in Proceedings of the 31st international conference on Very large data
bases, 2005, pp. 553–564.

[15] “MySQL  :: The world’s most popular open source database.” [Online]. Available:
http://www.mysql.com/. [Accessed: 14-Mar-2015].

[16] “PostgreSQL: The world’s most advanced open source database.” [Online].
Available: http://www.postgresql.org/. [Accessed: 14-Mar-2015].

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system
for structured data,” ACM Transactions on Computer Systems (TOCS), vol. 26,
no. 2, p. 4, 2008.

[18] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T.
Vassilakis, “Dremel: interactive analysis of web-scale datasets,” Proceedings of
the VLDB Endowment, vol. 3, no. 1–2, pp. 330–339, 2010.

[19] A. Schram and K. M. Anderson, “MySQL to NoSQL: data modeling challenges
in supporting scalability,” in Proceedings of the 3rd annual conference on
Systems, programming, and applications: software for humanity, 2012, pp.
191–202.

[20] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage
system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40,
2010.

[21] “Google BigQuery - Fully Managed Big Data Analytics Service — Google Cloud
Platform.” [Online]. Available: https://cloud.google.com/bigquery/. [Accessed:
14-Mar-2015].

[22] “Apache Parquet.” [Online]. Available: http://parquet.incubator.apache.org/.
[Accessed: 14-Mar-2015].

[23] “HBase – Apache HBaseTM Home.” [Online]. Available:
http://hbase.apache.org/. [Accessed: 14-Mar-2015].

[24] “DataStax - NoSQL Cassandra Database | Fastest, Most Scalable.” [Online].
Available: http://www.datastax.com/. [Accessed: 14-Mar-2015].

[25] “Redis.” [Online]. Available: http://redis.io. [Accessed: 18-Mar-2015].

 143

[26] “memcached - a distributed memory object caching system.” [Online]. Available:
http://memcached.org/. [Accessed: 14-Mar-2015].

[27] “Ehcache | Performance at Any Scale.” [Online]. Available: http://ehcache.org/.
[Accessed: 14-Mar-2015].

[28] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in ACM
SIGOPS operating systems review, 2003, vol. 37, pp. 29–43.

[29] “Welcome to ApacheTM Hadoop®!,” Apache Hadoop, 26-Feb-2015. [Online].
Available: http://hadoop.apache.org/. [Accessed: 14-Mar-2015].

[30] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s
highly available key-value store,” in ACM SIGOPS Operating Systems Review,
2007, vol. 41, pp. 205–220.

[31] “Apache Lucene - Welcome to Apache Lucene.” [Online]. Available:
http://lucene.apache.org/. [Accessed: 14-Mar-2015].

[32] “Apache Solr -.” [Online]. Available: http://lucene.apache.org/solr/. [Accessed:
14-Mar-2015].

[33] “Elasticsearch: RESTful, Distributed Search & Analytics | Elastic.” [Online].
Available: https://www.elastic.co/products/elasticsearch. [Accessed: 14-Mar-
2015].

[34] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, p. 107, Jan. 2008.

[35] “MongoDB.” [Online]. Available: http://www.mongodb.org/. [Accessed: 14-Mar-
2015].

[36] E. Bentley, “MongoDB mocked after posting “100GB Scaling Checklist” -
JAXenter,” JAXenter, 03-Oct-2013. [Online]. Available:
http://jaxenter.com/mongodb-mocked-after-posting-100gb-scaling-checklist-
106822.html. [Accessed: 14-Mar-2015].

[37] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G.
Czajkowski, “Pregel: a system for large-scale graph processing,” in Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data,
2010, pp. 135–146.

[38] “Giraph - Welcome To Apache Giraph!” [Online]. Available:
http://giraph.apache.org/. [Accessed: 14-Mar-2015].

 144

[39] “Titan: Distributed Graph Database,” Titan: Distributed Graph Database.
[Online]. Available: http://thinkaurelius.github.io/titan/. [Accessed: 14-Mar-
2015].

[40] “Neo4j, the World’s Leading Graph Database.” [Online]. Available:
http://neo4j.com/. [Accessed: 14-Mar-2015].

[41] L. A. Meyerovich and A. S. Rabkin, “Empirical analysis of programming
language adoption,” 2013, pp. 1–18.

[42] S. Kleinschmager, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik, “Do static
type systems improve the maintainability of software systems? An empirical
study,” in Program Comprehension (ICPC), 2012 IEEE 20th International
Conference on, 2012, pp. 153–162.

[43] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik, “An empirical
study of the influence of static type systems on the usability of undocumented
software,” ACM SIGPLAN Notices, vol. 47, no. 10, p. 683, Nov. 2012.

[44] P. Petersen, S. Hanenberg, and R. Robbes, “An empirical comparison of static
and dynamic type systems on API usage in the presence of an IDE: Java vs.
groovy with eclipse,” 2014, pp. 212–222.

[45] S. Hanenberg, “An experiment about static and dynamic type systems: Doubts
about the positive impact of static type systems on development time,” in ACM
Sigplan Notices, 2010, vol. 45, pp. 22–35.

[46] Brooks, “No Silver Bullet Essence and Accidents of Software Engineering,”
Computer, vol. 20, no. 4, pp. 10–19, Apr. 1987.

[47] Y. Sverdlik, “Google Replaces MapReduce With New Hyper-Scale Cloud
Analytics System,” Data Center Knowledge, 25-Jun-2014. [Online]. Available:
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-
mapreduce-favor-new-hyper-scale-analytics-system/. [Accessed: 14-Mar-2015].

[48] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy, “Two
controlled experiments assessing the usefulness of design pattern
documentation in program maintenance,” Software Engineering, IEEE
Transactions on, vol. 28, no. 6, pp. 595–606, 2002.

[49] B. Unger and W. F. Tichy, “Do Design Patterns Improve Communication? An
Experiment with Pair Design,” in Proceedings of International Workshop
Empirical Studies of Software Maintenance, 2000.

[50] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissedes, Design patterns: elements
of reusable object-oriented software. Reading, Mass: Addison-Wesley, 1994.

 145

[51] M. Stonebraker and U. Cetintemel, “‘ One size fits all’: an idea whose time has
come and gone,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, 2005, pp. 2–11.

[52] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P.
Helland, “The end of an architectural era:(it’s time for a complete rewrite),” in
Proceedings of the 33rd international conference on Very large data bases, 2007,
pp. 1150–1160.

[53] R. Kallman, Y. Zhang, J. Hugg, D. J. Abadi, H. Kimura, J. Natkins, A. Pavlo, A.
Rasin, S. Zdonik, E. P. C. Jones, S. Madden, and M. Stonebraker, “H-store: a
high-performance, distributed main memory transaction processing system,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1496–1499, Aug. 2008.

[54] “Real-Time Analytics Platform | Big Data Analytics | MPP Data Warehouse.”
[Online]. Available: http://www.vertica.com/. [Accessed: 14-Mar-2015].

[55] “In-Memory Database, NewSQL & Real-Time Analytics | VoltDB.” [Online].
Available: http://voltdb.com/. [Accessed: 14-Mar-2015].

[56] M. Fowler, “PolyglotPersistence,” Martin Fowler, 16-Nov-2011. [Online].
Available: http://martinfowler.com/bliki/PolyglotPersistence.html. [Accessed:
19-Mar-2015].

[57] P. J. Sadalage, NoSQL distilled: a brief guide to the emerging world of polyglot
persistence. Upper Saddle River, NJ: Addison-Wesley, 2013.

[58] S. Leberknight, “Polyglot Persistence,” Altamira, 15-Oct-2008. [Online].
Available: https://www.altamiracorp.com/blog/employee-posts/polyglot-
persistence. [Accessed: 14-Mar-2015].

[59] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and J. Aldrich, “Safely
composable type-specific languages,” in ECOOP 2014–Object-Oriented
Programming, Springer, 2014, pp. 105–130.

[60] T. Haselmann, G. Thies, and G. Vossen, “Looking into a REST-based universal
API for Database-as-a-Service systems,” in Commerce and Enterprise
Computing (CEC), 2010 IEEE 12th Conference on, 2010, pp. 17–24.

[61] F. Gessert, S. Friedrich, W. Wingerath, M. Schaarschmidt, and N. Ritter,
“Towards a Scalable and Unified REST API for Cloud Data Stores,” in
Jahrestagung der Gesellschaft für Informatik, Stuttgart, Germany, 2014, pp.
723–734.

[62] H. Lim, Y. Han, and S. Babu, “How to Fit when No One Size Fits.,” in CIDR,
2013, vol. 4, p. 35.

 146

[63] K. M. Anderson and A. Schram, “Design and implementation of a data
analytics infrastructure in support of crisis informatics research: NIER track,”
2011, p. 844.

[64] M. Fowler, Patterns of enterprise application architecture. Boston: Addison-
Wesley, 2003.

[65] E. Hieatt and R. Mee, “P of EAA: Repository,” Martin Fowler. [Online].
Available: http://martinfowler.com/eaaCatalog/repository.html. [Accessed: 14-
Mar-2015].

[66] R. C. Martin, Agile software development: principles, patterns, and practices.
Upper Saddle River, N.J: Prentice Hall, 2003.

[67] D. Garlan and M. Shaw, “An Introduction to Software Architecture,” in
Advances in Software Engineering and Knowledge Engineering, vol. I, V.
Ambriola and Tortora, Eds. New Jersey: World Scientific Publishing Company,
1993.

[68] “Multitier architecture,” Wikipedia, the free encyclopedia. 01-Mar-2015.

[69] M. Stonebraker, “What Does ‘Big Data’ Mean (Part 4)? | blog@CACM |
Communications of the ACM,” Communications of the ACM, 14-Mar-2013.
[Online]. Available: http://cacm.acm.org/blogs/blog-cacm/162095-what-does-big-
data-mean-part-4/fulltext. [Accessed: 14-Mar-2015].

[70] “google/guava · GitHub.” [Online]. Available: https://github.com/google/guava.
[Accessed: 14-Mar-2015].

[71] “Java Software | Oracle.” [Online]. Available:
https://www.oracle.com/java/index.html. [Accessed: 14-Mar-2015].

[72] “Spring Framework,” 2015. [Online]. Available: http://projects.spring.io/spring-
framework/. [Accessed: 14-Mar-2015].

[73] “A JavaScript library for building user interfaces | React.” [Online]. Available:
http://facebook.github.io/react/. [Accessed: 14-Mar-2015].

[74] “Bootstrap · The world’s most popular mobile-first and responsive front-end
framework.” [Online]. Available: http://getbootstrap.com/. [Accessed: 14-Mar-
2015].

[75] “Spring Data.” [Online]. Available: http://projects.spring.io/spring-data/.
[Accessed: 16-Mar-2015].

[76] “datastax/java-driver · GitHub.” [Online]. Available:
https://github.com/datastax/java-driver. [Accessed: 14-Mar-2015].

 147

[77] “google-gson - A Java library to convert JSON to Java objects and vice-versa -
Google Project Hosting.” [Online]. Available: https://code.google.com/p/google-
gson/. [Accessed: 16-Mar-2015].

[78] “jsoup Java HTML Parser, with best of DOM, CSS, and jquery.” [Online].
Available: http://jsoup.org/. [Accessed: 16-Mar-2015].

[79] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack, S. B.
Zdonik, A. Pagan, and S. Xu, “Data Curation at Scale: The Data Tamer
System.,” in CIDR, 2013.

 148

APPENDIX A – Mbox Persistence Implementations

Three-tier architecture, single data store, EmailService implementation for

MBox application.

 149

Diamond architecture RepositoryFacade implementation used by MBox.

 150

The Pipeline implementation for a dual data-store MBox application.

 151

APPENDIX B - Machinist Class Diagram

