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ABSTRACT 

Schram, Aaron (Ph.D., Computer Science) 

Software Architectures and Patterns for Persistence in Heterogeneous Data-

Intensive Systems 

Thesis directed by Associate Professor Kenneth M. Anderson 

 

Software engineers are faced with a variety of difficult choices when selecting 

appropriate technologies on which to base a software system.  As the typical 

software user has become accustomed to systems being “on-demand” and “always-

available,” the software engineer is more concerned than ever before about the 

issues of system scalability, availability, and durability.  In the absence of expertise 

in distributed systems, architectural decisions become complex, slowing feature 

development and introducing error.  Software engineering is in need of robust 

patterns and tools that increase the accessibility of specialized technologies 

developed for the completion of specialized tasks.  This dissertation describes my 

existing work related to the challenges of domain modeling and data-access in large-

scale, heterogeneous data-intensive systems and extends this work to include novel 

architectures for utilizing multiple large-scale data stores effectively.  This research 

focuses on increasing the accessibility and flexibility of these data stores, which 

typically afford scalability, availability, and durability at the cost of added 

complexity for the application developer.  The resulting architecture and associated 

implementation alleviates common challenges faced by small and medium software 

enterprises during the development of heterogeneous data-intensive software 

applications.
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CHAPTER 1: Introduction 

Big Data is a rapid increase in public awareness that data is a valuable 
resource for discovering useful and sometimes potentially harmful knowledge. 

- Stephen Few [1] 
 

This dissertation concerns itself with research issues related to the task of 

designing and implementing architectures capable of leveraging a variety of 

purpose-built frameworks and systems.  While significant progress has been made 

in computer science research recently—specifically in the areas of large-scale 

computing and data processing—software engineering researchers have struggled 

to provide adequate and widely adopted abstractions for the construction of 

heterogeneous systems that are rapidly becoming commonplace in small and 

medium sized enterprises.  Minimalizing the complexities encountered when 

adopting purpose-built frameworks aids in the greater transition towards a 

heterogeneous style of application architecture based upon numerous specialized 

technologies. 

This introduction details the conditions that influenced the creation of today’s 

heterogeneous approach to application development by exploring the need for 

further research in the design and application of patterns for large-scale systems of 

systems.  We present an overview of past advances in enterprise patterns and 

technologies that have made contributions to the success of this research domain 

and discuss remaining challenges. 



 2 

In the late 1990s, software companies began to experience massive consumer 

adoption of their technologies.  Desktop and laptop computers quickly became 

ubiquitous in homes, schools, and offices.  The Internet was also experiencing 

adoption at a staggering rate with 50% of adults (18+) going online by the year 2000 

[2].  The rapidly growing base of users operated under new software paradigms and 

expectations compared to the expert users of the previous decades—expecting 

software packages to be accessible via a web browser.  The browser greatly 

simplified the adoption of new software in a variety of ways for its users.  The user 

no longer needed to install software from physical media (floppy or compact disk) 

thus, avoiding many complex failure cases associated with user-initiated software 

installations on widely varying hardware.  Additionally, the user need not worry 

about backing up important information stored by the program: if the user’s system 

experienced a hardware failure, the data was still safe with the application 

provider.  Applications could be accessed that were running on machines with much 

more advanced hardware than the user owned, increasing performance while 

lowering cost for the user.  Finally, the software was always up-to-date, providing 

the user with the latest in features and bug fixes without waiting for the next 

version to be shipped. 

As more and more users adopted Internet based applications, software 

companies providing these applications experienced an incredible amount of 

growth.  The growth of these businesses forced software engineering teams to 

innovate rapidly.  Some of these efforts were conducted in well-funded research and 
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development organizations, such as government labs and large corporations (e.g., 

IBM), while others took place within the stereotypical software “startup” (e.g., 

Google, Yahoo!).  Software applications of this nature became know as “Software as 

a Service” (SaaS) products.  The name refers to the fact that software is delivered to 

the user as an “on-demand” service without the need for physical installation media.  

While this drastically decreased production costs for the business, it shifted many 

critical responsibilities from the user to the vendor, specifically the software 

engineering team.  This also drastically reduced the software release cycle, which 

allowed vendors to push updates for features and bug fixes more frequently. 

A typical SaaS application is hosted in a data center and operated by the 

same organization that develops the application.  Current examples include Google 

Gmail [3], Facebook [4], and other applications of similar nature where users access 

the application via a remote client (e.g., web browser, mobile client) and the hosted 

application manages all aspects of the user’s data.  This style of application 

deployment motivated and continues to motivate software engineering teams to 

adopt multi-tenant architectures. 

A multi-tenant architecture uses the same software and storage systems to 

service requests from many different clients and store data from many different 

users.  A user from Company X will have their data stored in the same manner and 

possibly on the same physical system as a user from Company Y.  This is an 

important architectural feature.  Although it allows software engineers at the 

application level to quickly and easily interact with data, regardless of the 
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customer, it implies co-locating customers of extremely high and low use.  A quality 

of service problem, attributed to a customer of extremely high use, affects the 

experience of other users. 

As user- and machine-generated data volumes grew rapidly the bottlenecks of 

existing storage systems were quickly exposed.  It was common for applications to 

be scaled “vertically”, meaning the application (deployed on a single host) would be 

relocated to more capable hardware, providing improved processing, storage, and 

memory.  This was an expensive and often error-prone process.  If scaling vertically 

was not practical for an organization, the other option afforded to the organization 

was to performance tune the application to run more efficiently on existing 

hardware.  Although this avoided the costs associated with purchasing new 

hardware, scaling via this method was often a stopgap and as costly as new 

hardware—if not more so—in additional engineering time.  As more and more 

systems reached the limits of what could be accomplished by scaling vertically or 

performance tuning, software teams strove for a new approach. 

Running a SaaS application on a single host introduces a variety of problems 

that can have disastrous consequences for any business, small or large.  A system 

failure at the application or storage level can affect the user experience or result in 

data loss—both of which are devastating problems when selling an “on-demand” 

and “always available” service.  Researchers and application developers were 

motivated to create new systems which were “horizontally” scalable, available, and 

durable.  Focusing on these attributes allowed the SaaS vendor to offer a high 
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quality and cost-effective product to users while containing the costs of hosting, 

storage, and bandwidth. 

Modern software systems are expected to be always available and, therefore, 

require redundancy throughout the application and the ability to quickly adapt to 

large increases in usage.  For most applications this implies a distributed approach 

to system architecture.  Increasing system capacity through distribution is 

described as scaling horizontally and is routinely accomplished by partitioning data 

and processing capacity across multiple hosts.  Successfully implementing these 

strategies is extremely complex and requires expertise in distributed systems; 

however, the benefits for a software organization are numerous.  Users expect on-

demand products and providing them is now mandatory for even the smallest 

software-based businesses, which requires these software businesses to engineer 

their products to handle unavoidable situations, like hardware failures and extreme 

usage, without incurring downtime. 

To keep up with changing demands, software businesses must architect 

systems that can scale efficiently without causing an interruption in service for 

their customers.  As a business experiences success, there is incredible pressure to 

keep up with the largely unpredictable demand for their products or services.  This 

makes it necessary for systems to be able to scale effectively with little to no notice.  

In traditional vertically-scalable systems, the software company orders better 

hardware and software from a vendor and then slowly integrates the new 

capabilities into their existing product.  This approach impacts existing and new 
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customers, as the software team is required to shift their focus from implementing 

new features and customer requests to integrating new hardware and software.  In 

some cases, the updates require new design and logic for the persistence tier of the 

application, which makes the persistence aspects of the application cumbersome to 

scale.  Many applications are forced to implement complex “sharding” algorithms 

where the data is partitioned to accommodate future growth.  This causes 

organizations to buy more equipment than they need and utilize it inefficiently 

unless the sharding algorithm is properly optimized.  Undesired consequences of 

improper data sharding are numerous but often occur due to pinning a client to a 

single host that fails or becomes unresponsive due to high system load. 

SaaS systems today make use of a variety of horizontally-scalable data 

storage solutions.  Many encourage adopters to take advantage of inexpensive, off-

the-shelf hardware that can be easily added to existing systems.  In these systems, 

determination of how to partition an ever-growing amount of data is left up to the 

data storage system which transparently recognizes newly added hardware (i.e., 

servers) as additional resources, avoiding the need for expensive and customized 

hardware solutions.  Through this strategy, increasing the capabilities of a software 

system to match business needs can be done incrementally and without incurring 

downtime, which allows a software or operations team to scale an application 

without diverting time away from feature development.  With the advent of 

Infrastructure as a Service (IaaS) or “Cloud Computing”, vendors like Amazon Web 
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Services enable organizations to scale systems up or down as needed, paying for 

only the processing and storage they use. 

As the acquisition and maintenance of hardware continues to be 

commoditized by the Cloud, software engineers are provided an ever-increasing set 

of technologies on which to build their applications.  These technologies are 

produced and distributed by experts in distributed systems, and, although these 

technologies are able to accommodate enormous growth in data, they are also 

extremely complex.  Data storage, as a field of study, is where the most innovative 

approaches to scalability have been developed.  Data is generated with staggering 

velocity and variation, which makes it extremely difficult to persist into rigid 

schemas.  Applications making use of rigid specification languages such as XML, 

SQL, and others have struggled to adapt to ever-changing data structures that are 

generated by a diverse set of users and systems while gaining, modifying, and losing 

attributes with every iteration. 

What was needed was the ability to easily accept data from a variety of 

sources without enforcing strict validation and binding logic.  It became difficult to 

use contract-driven transport and storage interfaces.  The popularization of REST 

[5] and JSON [6], [7] made communication between systems straightforward and 

flexible, through the use of standardized conventions, built upon HTTP and nested 

data structures.  Additionally, key-value data structures became extremely 

prevalent throughout the persistence tier of the application.  Many popular large-

scale, open source storage systems use key-value pairs to achieve easily replicable 
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and flexible schema-less data storage (e.g., Cassandra, Hadoop).  These systems use 

a unique key to identify an object of interest and store an entire object graph 

representation (i.e., embedded object graph) as a value.  This approach not only 

allows an application to store an object in its current structure, regardless of the 

defined storage schema, but it also allows for objects to be split and/or replicated 

transparently among a cluster of machines, thus improving data availability and 

application scalability.  Avoiding costly, error-prone schema updates allows an 

organization to adapt quickly to new challenges. 

Software engineering, as a discipline, is increasingly at the center of the 

majority of engineering research, within and outside of computer science.  Even 

beyond schools of engineering, it is common for research groups to incorporate a 

variety of available and adaptable software tools to interpret the growing amount of 

data being generated and captured in nearly every discipline.  The most 

straightforward and commonly used systems are now capable of activities that 

would have been out of reach to all but the most well funded projects just a decade 

ago.  It has never been easier to develop and deploy a SaaS application.  The 

growing acceptance of Cloud based systems and web frameworks (e.g., Ruby on 

Rails) has redefined the skillsets required to be a successful application developer. 

Understanding the motivating factors that led to the development and 

adoption of SaaS architectures is critical to the study of software engineering for 

heterogeneous systems.  With complex system attributes such as scalability, 

availability, and durability required to meet user expectations, research is needed 
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to understand and extract accessible patterns.  Doing so will allow software 

engineers to benefit from these technologies without requiring expertise in 

distributed systems, which can overwhelm even the most experienced application 

development teams.  Organizations looking to manage the complexities associated 

with these technologies are subdividing team members into specialized groups of 

Software Configuration Management (SCM) engineers who manage the deployment 

and maintenance of these systems.  These teams refer to themselves as developer 

operations (i.e., DevOps).  Furthering software engineering research in this domain, 

we work to minimize the complexities inherent in developing distributed systems, 

offering an alternative to segmenting the engineering team in an effort to limit the 

amount of valuable engineering hours required to build and deploy heterogeneous 

systems—returning full focus to application development. 

Indeed, in today’s SaaS architectures scalability, availability, and durability 

are not “nice to haves” but instead, are basic requirements upon which the 

foundation of an application is built.  Better patterns and architectures in this area 

of research will allow software engineers to return focus to abstractions specific to 

their problem domain, without being overwhelmed by the complexities associated 

with the implementation of specific distributed systems.  In the next chapter, we will 

discuss, in detail, the classes of data storage technologies available to the software 

engineer and the complexities associated with the evolution from homogeneous to 

heterogeneous SaaS architectures.  
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CHAPTER 2: Large-Scale Data Stores 

In this chapter, we present an introduction to large-scale heterogeneous 

systems and the specialized frameworks used to construct them.  We focus on 

software as a service (SaaS) architectures as SaaS is the primary architecture used 

by production web applications today.  We will also discuss, in detail, examples of 

the different types of specific tasks required by large-scale systems and the 

frameworks commonly used to accomplish each.  The conclusion of this chapter will 

outline the challenges faced by an organization as they begin to design and 

implement a system of this nature.  Given a thorough review of these specialized 

technologies, we will be well suited to recommend how each technology can be made 

more accessible to the software engineering community. 

The primary roles fulfilled by software applications involve capturing, 

understanding, and presenting data.  As data sets become too large to fit into 

memory or on local disks, applications need to contend with “Big Data” [8].  Because 

data continues to grow exponentially, the reasonable mitigation strategy is to 

acquire more resources to store and process it.  This comes in the form of cheap and 

expendable computer servers or nodes which can be acquired for minimal cost and 

in large numbers (i.e. Moore’s Law [9]).  Networking these nodes into a cluster 

allows systems to be scaled horizontally with incremental and predictable cost to 

the organization. 
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Distributed systems researchers have provided software engineers with a 

diverse set of tools and techniques that can be used to efficiently utilize clusters of 

servers.  The focus of tools in this research area is largely concentrated on 

improving data storage and access algorithms at low levels of abstraction and is 

primarily presented at conferences such as VLDB [10].  It must be noted that this 

research is incredibly important; without it, the software industry would not be 

where it is today.  However, an unfortunate side effect of a focus on low-level system 

attributes is that the abstractions provided to users (i.e., application developers) by 

these technologies require an in-depth knowledge of the underlying distributed 

systems to correctly and effectively use the provided Application Programming 

Interfaces (APIs).  This forces the application developer to deal with immense 

amounts of complexity when adopting new data storage technologies.  To 

successfully adopt these technologies, an application developer must not only 

envision the current and future needs of the end user (i.e., the system user), but 

also understand the constraints which the architect of the system was under—

appreciating the perspective, values, and trade-offs made by the system architect is 

key to effective utilization. 

To better understand the current state of these frameworks, it is helpful to 

organize the most widely adopted technologies and present an overview of each. 

2.1 Data Store Technology Overview 

Capturing data is core to every software application and, as such, will be the 

focus of this section and a critical aspect of this dissertation.  As the rate at which 
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data is captured continues to increase in volume and velocity, the need for 

specialized data storage systems is drastically increasing.  Software engineers must 

choose from an ever-growing list of technologies developed to capture and sift 

through data.  These technologies fall into one or more of the following classes 

shown in Table 2-1 and will be described throughout the remainder of this chapter. 

Class Technology Attributes 

Relational Oracle, MySQL Highly-structured data model, complex 
scalability, optimized for OLTP 

Columnar  Bigtable, 
Cassandra 

Semi-structured data model, linearly 
scalable, storage optimized for data reads 

Key-value 
GFS, Hadoop, 
Dynamo 

Hash-based data model, linearly scalable, 
efficient reads and writes 

Document Lucene, MongoDB 
Easily adoptable data model, used for 
information retrieval, optimized for 
flexible ad-hoc data access 

Network 
Pregal, Neo4j, 
Giraph, Titan 

Relationship data model, small objects 
only, optimized for network traversals 

Table 2-1.  Popular classes of large-scale data stores. 

2.1.1 Relational 

Typically, an application begins by persisting data in a relational database 

management system (RDBMS).  This type of solution stores data in a series of 

tables, each of which contains rows and columns.  Data is grouped together on disk 

as continuous rows in a random access structure or an order generally matching the 

access pattern (e.g., B-tree).  Each row is a datum, which is required to conform to 
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the schema associated with the table, thus, having a set of attributes represented by 

columns.  Tables are linked via foreign keys that allow for traversal from one row to 

another.  Object graphs are stored in a reference based and normalized 

representation. This design allows for space efficient utilization of storage resources 

(i.e., no data duplication due to normalization), but it requires random access to the 

storage layer when data references are resolved.  This can make read operations on 

large data sets compute intensive, especially if the data is too large for memory or a 

solid-state drive (SSD), forcing data retrieval from a hard disk drive (HDD). 

Much research has been done on making relational systems more read 

efficient, including denormalizing the schema as in a Star Schema [11].  Even with 

this approach, row based systems have been shown to underperform other designs 

when it comes to online analytical processing tasks [12].  However, even with their 

limitations, relational data stores provide end users with an extremely accessible 

data model that affords straightforward persistence and ad-hoc querying.  To scale 

relational technologies to accommodate large amounts of data, data is partitioned in 

predetermined and application specific shards which makes persistence and 

retrieval across shards difficult if not carefully implemented.  Availability is 

accomplished by replication of data to a “hot” backup.  In the case of a system 

failure, all requests are switched to the replicas.  Flexibility is largely given up to 

provide the user with data validation and normalization.  It is worth noting that 

systems of this nature have been widely used for decades and scaled to extreme use.  

Harizopoulos showed that typical online transaction processing (OLTP) systems 
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spend their time divided almost evenly between logging, locking, latching, and 

buffer management [13].  However, removing any of these features from the OLTP 

system has been proven to drastically increase its performance [14], making 

RDBMS a viable technology choice for organizations willing to customize, tune, and 

maintain them.  Typical vendors for this class of storage system are Oracle, IBM, 

SAP and Microsoft.  Open Source alternatives are MySQL [15] and PostgreSQL [16] 

among others. 

2.1.2 Columnar 

Columnar data stores provide an easily distributed storage system while still 

providing users a simple data model.  The data model typically provides structure in 

the form of Rows and Columns, essentially exposing a multidimensional map or tree 

in which to store data.  A wide-column columnar data model first implemented by 

Google Bigtable [17] uses rows or “row keys” to index into the first (i.e., outer) map.  

The second (i.e., inner) map contains columns and column values which do not need 

to adhere to any schema, providing flexibility to the user and grouping columns 

together on disk.  Other columnar technologies, such as Google Dremel [18], allow 

the enforcement of a flexible schema and differ widely in their implementation, yet 

still group columns together for persistence on disk, which enables extremely 

efficient data access. 

Regardless of the system, domain modeling for columnar storage systems is 

non-trivial and is a research area investigated by the author [19].  Further work is 

needed to better provide tools and processes for adopting columnar systems in place 
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of existing relational-based applications.  Distributed columnar stores, such as 

Cassandra [20], distribute data across a cluster of machines by row.  This operation 

is often transparent to the user and done in a way that enables trivial expansion of 

the cluster as needed.  Cassandra achieves high levels of availability by replicating 

rows and columns on many machines throughout the cluster.  If a node is lost due to 

a failure, the data is available to be read from an active replica.  It is common to set 

a replication factor when deploying such a system, which determines the number of 

replicas that must be maintained by the system.  Often replication is handled 

without intervention from the user making columnar stores compelling technologies 

for organizations in need of “out of the box” scalability and availability.   

Columnar systems have been deployed at Google [17] and Facebook [20] for 

many years but recently have experienced tremendous growth among small to 

medium sized enterprises.  Google Dremel, released as Google BigQuery [21], has 

gained popularity for its analytics capabilities and has a popular open source 

implementation, Apache Parquet [22].  HBase [23] and Cassandra are open source 

implementations of wide-column stores which have both sparked an assortment of 

vendors seeking to ease complex transitions to columnar stores from relational data 

stores—the most prominent being DataStax [24], which has focused primarily on 

making Cassandra accessible to the enterprise. 

2.1.3 Key-Value 

Key-value technologies are typically implemented as distributed hashes.  In 

contrast to columnar (i.e., wide-column) systems, key-value stores do not provide 
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the user with a data model abstraction on top of a simple map.  Operations such as 

get() and put() are supported across these systems, with each providing enhanced 

API functionality depending on anticipated use.  There are a variety of in-memory 

key-value systems including Redis [25], MemcacheD [26], and EhCache [27].  These 

systems distribute a hash of values across a cluster using memory as storage for 

quick access.  Hashes can typically be configured to be persistent through a machine 

power cycle.  If the data is too large to be stored in memory, a more appropriate, file 

system based technology is typically chosen.  Systems such as Google File System 

[28], Hadoop [29], and Dynamo [30] provide the user with a persistent distributed 

hash.  Google File System and Hadoop in particular expose a file system based API, 

similar to POSIX [28], which allows consumers to invoke create, read, update, and 

delete (CRUD) operations on files and folders, addressing data via paths.  In the 

case of GFS and Hadoop, the file data split and placement is determined by a single 

Master node.  All file access requests from clients are handled by the Master node 

that sends back location information for each split that the client can then use to 

request data directly from individual cluster nodes.  Master nodes are often 

replicated in near real time to allow for “hot” failovers, should the Master node 

become unavailable. 

Dynamo does not provide a file system abstraction, instead implementing a 

very simple get()-put() interface and focusing on scalability, availability, and 

durability.  Unlike GFS and Hadoop, Dynamo does not rely on a single Master node 

to partition its data, relying on consistent hashing to partition data, which allows 
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for easily expanding a database across a cluster of machines.  Dynamo allows any 

node within the cluster to be addressed directly to read or write data, routing 

clients to the correct host within one network hop.  In this way, Dynamo strives to 

be “always-writable” or available, even while experiencing multiple node failures.  

All of the described disk based key-value systems support out-of-the-box 

replication that is largely transparent to the user, providing a high degree of 

availability.  By completely eliminating the ability to impose a data model, key-

value (distributed file system) technologies provide the foundation for other large-

scale data formats and stores, such as Apache Parquet and HBase, respectively.  

Unfortunately, the lack of a flexible domain model forces software engineers to store 

complex objects and relationships in unfamiliar and convoluted ways, often 

denormalizing object graphs and requiring the persistence of data in a way that 

anticipates how it will be accessed.  Although this challenge is not unique to key-

value stores, the lack of even the most basic support for a data model makes 

adoption of these technologies difficult for enterprises struggling to scale. 

2.1.4 Document 

Document data stores provide the user with the ability to model objects as 

documents.  Document data stores often expose the binding of fields to primary 

types such as strings, numbers, and dates.  This paradigm is familiar to anyone who 

has worked with an object oriented language and especially those who have 

previous experience with object relational mapping technologies (ORMs).  While the 

type of document that each vendor supports differs (XML, JSON, BSON, etc.), they 
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typically require each document to provide a unique identifier when stored.  They 

differ from relational databases by allowing flexibility at the field level of each 

document.  In a relational database each row in a table must have the same number 

of columns as all the other rows present in the table.  Document stores give the user 

the flexibility to persist documents (i.e., rows) in a collection that differs in the 

number and type of fields (i.e., columns) associated with each document.   

In addition to providing a relaxed schema, document stores are often 

associated with information retrieval tasks.  The APIs exposed by document stores 

are rich with query support.  Lucene [31], a search engine technology, is one of the 

most popular open source implementations of a document store.  It provides full text 

search, attribute filtering, and faceting over any set of documents stored in its 

index.  It also provides out of the box support for text stemming, tokenization, stop 

word removal, and result scoring.  The flexibility of Lucene has led to the 

development of two popular distributed search engines, Solr [32] and Elasticsearch 

[33].  While they differ in implementation, they both provide a highly available and 

scalable storage solution without relinquishing a familiar domain model and ad-hoc 

query support like other large-scale data stores.  However, these features do come 

at a cost.  Document data stores are not designed to handle very large (e.g., 

gigabytes) individual files like distributed file systems are and, as such, are not 

optimized for reading and appending large amounts of data from and to disk. This 

often makes them a poor choice for the underlying systems of batch processing 

frameworks such as MapReduce [34].  In practice, they can be problematic to scale 
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for large amounts of data and difficult to make durable.  MongoDB [35] in 

particular has had significant scaling problems documented by the teams struggling 

to adopt this promising technology [36]. 

2.1.5 Network 

Network based data storage technologies persist an interconnected graph of 

vertices and edges.  A graph is an extremely expressive way to capture objects and 

relationships and allows for an easy domain model transition from a relational 

database because most of the available vendor solutions allow the addition of an 

arbitrary number of properties to any vertex or edge, otherwise referred to as a 

property graph.  Network stores are most commonly used when the number of edges 

between nodes becomes unmanageable in any other storage technology or when the 

application benefits greatly from graph algorithms and theory (e.g., shortest path 

between two nodes).  Many organizations use a network to model friend and 

follower relationships, allowing quick access to large numbers of friends or followers 

and making the extremely common “Do you know?” feature trivial to implement.  

However, network stores are typically poor at handling large files or vertices and 

edges that have a large number of properties associated with them.  Scalability and 

fault-tolerance of these systems vary widely between implementations.  Systems 

like Google’s Pregel [37] are extremely scalable (e.g., thousands of commodity 

machines) and fault-tolerant.  An open source implementation of Pregel is available 

as Apache Giraph [38].  The open source graph database Titan [39] layers a graph 

API on top of the columnar store Cassandra.  Titan cleverly maps networks onto 
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Cassandra’s data model, which allows Titan to take full advantage of Cassandra’s 

high availability and scalability attributes.  However, the most popular network 

store available to the enterprise is Neo4j [40], which can be made highly available 

through master-slave replication and scalable by the addition of more read-capable 

replicants. 

All of the described technologies provide a wide array of desirable features for 

applications.  Unfortunately, the research surrounding these technologies focuses 

primarily on storing and retrieving arbitrary data.  While this is an important 

focus, it is limited from the perspective of the software engineer who has become 

accustomed to working with objects and relationships.  Seldom does the software 

engineer decompose problems in terms of just data.  A general lack of empathy for 

the software engineering perspective has resulted in numerous challenges that 

must be overcome in order for an application developer to properly benefit from this 

valuable set of technologies.  
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CHAPTER 3: Towards N Data Store Architectures 

Although there has been an explosion of new technologies available to the 

software engineer in the last decade, significant challenges still remain.  The 

distributed systems researchers who developed the systems described in the 

previous chapter were focused on issues concerning scalability, availability, and 

durability.  While these issues are of extreme importance, they are not the only 

issues of concern to a software engineer tasked with making technology choices for 

their application. 

3.1 Challenges for Software Engineering 

Software engineers, as end users of large-scale technologies, often lack 

expertise in distributed systems.  These large-scale technologies introduce 

scalability, availability, and durability at the cost of complexity for the end user, the 

software engineer.  Although these system attributes are extremely attractive for 

any application developer, the complexity of adopting them may make “scaling up” 

or performance tuning more viable for an organization that lacks distributed system 

expertise.  This is unfortunate, as “scaling out” has been shown time and again to 

better serve an organization in terms of cost and performance. 

Software engineering organizations are required to make technology 

decisions frequently and one of the primary attributes these organizations evaluate 

when looking to adopt new technologies is accessibility.  Many of the technologies 
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detailed in the previous chapter lack a vision for how application developers will use 

them.  Recognizing what influences an application developer to adopt a technology 

is essential to creating an accessible data store. 

Understanding features that motivate an application developer to adopt a 

particular technology is an emerging area of software engineering research.  

Empirical evidence is not available for all technology choices but much work has 

been done on programming language adoption.  Meyerovich et al. found that open 

source libraries, existing code, and experience, largely determine language choice 

while intrinsic features such as performance, reliability, and simple semantics do 

not [41].  The features found to matter least in language adoption are broadly the 

focus of large-scale data stores.  While we cannot empirically claim that the same 

features influence data store adoption as language adoption, we do contend that 

both are motivated by accessibility, which has not been the focus of large-scale data 

stores thus far.  Features such as scalability, availability, and durability are as 

essential to data store technologies as performance and reliability are to 

programming languages, but they may not be of primary importance with regards 

to user adoption. 

Hanenberg et al. [42]–[45] provide another example of accessibility 

motivating technology choices.  Hanenberg and his colleagues focus on providing 

empirical evidence for claims on both sides of the “static vs. dynamic” language 

debate.  Their work shows that there are clearly defined areas where it does and 

does not matter what type of language one uses to accomplish a development task.  
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Their work suggests that there are certain activities where static type systems have 

distinct advantages.  The results show that static, in comparison to dynamic, type 

systems improve system maintainability [42], provide implicit design decision 

documentation [43], and improve the usability of unfamiliar APIs (even with the aid 

of a modern IDE) [44].  In spite of empirical evidence, dynamic languages are 

increasingly popular due to their accessibility.  Proponents argue that type 

conversion is time-consuming and errors due to type inference are simple to correct 

despite research showing this to be invalid for systems over ten lines of code [45]. 

Regardless of the advantages promised by large-scale data stores, they must 

be carefully weighed against the complexities they will introduce.  The advances in 

scalability, availability, and durability attack aspects of what Fred Brooks describes 

as the accidental difficulties of software engineering [46].  Although these attributes 

contribute to reducing some difficulties, they create a great deal of accidental 

complexities that distract the software engineer from focusing on essential 

difficulties.  In his article, No Silver Bullet, Brooks identifies three “breakthroughs” 

in accidental difficulties that large-scale systems reintroduce during adoption. 

Brooks notes advances in high-level languages will decrease complexities 

encountered during software development.  Today, it is common for a large-scale 

data store to ship with its own domain specific language (DSL) or data access 

paradigm, which results in additional complexity for the software engineer as now 

they must gain an in-depth understanding of additional abstractions for each 

specific system they wish to introduce into their architecture.  Examples include 
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SQL, CQL (Cassandra), MapReduce (Hadoop), Gremlin (Titan), and Cypher 

(Neo4J).  Adopting an additional system results in intensive effort for the engineer, 

which deters them from choosing the best system for the task at hand even when 

the system offers a much-desired feature set.  

The second accidental difficulty Brooks considers solved is time-sharing.  

Time-sharing, he states, “preserves immediacy”.  In a large-scale distributed 

system, resource coordination happens rapidly at varying levels of abstraction.  

However, at the layer closest to the software engineer, the processing paradigm for 

large amounts of data is batch processing.  The most widely used large-scale system 

for data processing is currently Hadoop, which is an open source implementation of 

Google’s MapReduce.  MapReduce, and as a result Hadoop, is a distributed system 

that allows the user to harness the power of an arbitrary number of computers 

without having to understand the underlying complexities.  Utilizing MapReduce 

affords an organization an incredible amount of data processing capabilities that 

has helped propel the widespread adoption of Hadoop.  What many organizations do 

not comprehend is the trade-off in productivity they are making because Hadoop 

exposes its processing capabilities via a batch processing interface, which by default 

does not ensure proper time-sharing of the system by leaving submitted jobs in a 

queue until cluster resources are made available for processing.  For this reason, 

even Google, the creators of MapReduce, have largely abandoned the framework, 

opting for more real time technologies [47] that facilitate more iterative 

development.  Large-scale data stores often make it difficult for software engineers 
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to preserve in their minds the context of the problem they are solving; while batch 

jobs or long running queries are being scheduled and run over hours, days and—in 

extreme cases—months, the software engineer will likely move to other tasks only 

to be interrupted at a later point with job failures or incorrect results. 

The third accidental difficulty cited by Brooks as solved is that of the unified 

programming environment.  We have yet to see a body of work on this subject, but 

one can imagine a need to again solve this difficulty for the class of applications 

addressing “Big Data” challenges.  A unified programming environment for large-

scale systems will need to be designed from inception to work with heterogeneous 

systems that leverage a diverse array of languages and access patterns.  Without 

research in this area, software engineers are forced to context switch frequently and 

gain in-depth understandings of the complete system.  This results in immense 

levels of complexity for the software engineer, which, in turn, limits the quality and 

velocity of application development in comparison to homogeneous systems.   

The software engineering researchers of the 1980s and 1990s worked 

diligently to reduce the accidental complexities involved in software development.  

They pioneered new languages, patterns, processes, and programming 

environments that allowed the software engineer to focus on the essential 

difficulties of software.  As applications have moved from single install, desktop 

environments, to complex data-intensive infrastructures deployed across thousands 

of computers, research is needed to afford the same support of the past to the 

software engineers of the present.  Only through the development of new tools and 
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techniques can the field of software engineering improve the accessibility of large-

scale, distributed, heterogeneous systems of systems. 

3.2 Opportunities for Software Engineering 

This dissertation examines open issues in the area of software architectures 

for large-scale, heterogeneous data-intensive systems.  Software engineering 

research is largely deficient in the study of emerging trends related to the 

development of highly-distributed SaaS applications composed of specialized data 

storage technologies, instead of “one-size fits all” systems.  The lack of widely 

adopted and well-proven architectures and patterns in this area leads software 

organizations to make costly investments in both financial and human capital 

before pursuing technologies that will benefit themselves and their customers.  

In the previous chapter, we provided an overview of existing technologies 

related to large-scale data storage, detailing the minimum knowledge required by a 

user for non-expert level utilization.  These systems, without modification, typically 

require expert-level knowledge in distributed systems and a deep understanding of 

the data modeling capabilities of each.   Data models afforded by these technologies 

even go so far as to force the denormalization of object graphs, which causes data 

duplication and the elimination of object references.  This technique, among others, 

is foreign to software organizations that have previously relied on only relational 

data storage technologies and requires well-documented abstractions to increase 

system accessibility.  Without research into the complexities encountered during the 

adoption of large-scale data stores, software engineers will continue to give up 
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accessibility and flexibility in exchange for scalability, availability, and durability.  

The idea that software engineers can be afforded all of these highly-desirable 

features simultaneously serves as motivation for this work. 

By leveraging an understanding of available technologies, this dissertation 

will work to abstract away complexities inherent in the adoption of one or many 

large-scale data stores.  Design patterns and architectures have been proven to aid 

in software engineering tasks by allowing the engineering team to efficiently 

communicate complex subjects without lengthy and distracting discourse [48], [49].  

While there is a significant amount of peer-reviewed research available for small, 

object-oriented systems [50], much work is needed before a team of software 

engineers can effectively communicate about the issues and concerns that present 

themselves while developing with a variety of disparate data stores. 

This dissertation develops and documents novel architectures and patterns to 

be applied by organizations that wish to adopt specialized technologies into 

homogeneous or existing heterogeneous environments.  The use of these 

abstractions, alone or in combination with others will greatly decrease the risk 

required for an organization to adopt highly specialized frameworks and serve to 

increase the accessibility of these frameworks for all involved.  
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CHAPTER 4: Related Work 

Much research has been accomplished by the distributed systems community 

to provide application developers with numerous, extremely capable technologies.  

Other computer science disciplines are now diligently working to contribute.  

Although the resources were available for the software engineering community to 

devote attention to, their focus was elsewhere.  Software engineering has improved 

the accessibility of software development immensely in the past.  Unfortunately, 

many of these advances are not directly applicable to large-scale heterogeneous 

systems without modification or extension.  As detailed in previous chapters, the 

lack of architectural patterns, unified programming languages, and development 

environments for distributed, heterogeneous systems forces the software engineer to 

cope with immense accidental complexities.   

Homogeneous “one-size fits all” systems afforded a set of constraints that 

made eliminating numerous accidental difficulties reasonable.  The first desktop 

environments and object oriented programming languages were proposed decades 

ago and continue to be improved by the software engineering community to this 

day.  With many common problems solved, the focus of the community has evolved 

beyond object oriented design patterns (e.g., the transformation of the OOPSLA 

conference into the SPLASH conference).  The rapid growth in data has pushed 

database designers to innovate independent of the software engineering community.  

Michael Stonebraker first noted the move from traditional database management 
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systems by describing the death of the “one-size fits all” data store [51], [52], 

foreseeing that traditional relational systems—in use for over 25 years—would be 

replaced by a variety of specialized technologies.  Stonebraker has since been 

involved in the creation of many well-known large-scale data stores including C-

Store [14] and H-Store [53], which later became commercialized as Vertica [54] and 

VoltDB [55].  It was the distributed systems community that anticipated and 

responded to the seemingly ever-increasing amount of data software engineers are 

faced with today. 

Abstracting away the complexities of working with multiple data stores is an 

emerging area of interest for both academia and industry.  Scott Leberknight was 

the first from industry to attach a name to this challenge.  In a blog post later 

popularized by Martin Fowler [56], [57], Leberknight describes polyglot persistence; 

he says, “Polyglot Persistence, like polyglot programming, is all about choosing the 

right persistence option for the task at hand” [58].  This description captures the 

motivation for this dissertation.  Software engineers should be encouraged to use 

the appropriate technology for data storage just as they do with languages.  

However, similar to how introducing an excess amount of programming languages 

into an application stack complicates application development, so does the 

introduction of many data stores.  In polyglot programming, researchers are 

developing systems to allow application developers to easily program in one to many 

languages within the same file with limited complexity [59].  Similar efforts—albeit 

in spirit rather than implementation—are required to address the complexities of 
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polyglot persistence.  Although some efforts are detailed below, they largely result 

from work within the distributed systems community and focus on attributes other 

than those of accessibility and flexibility. 

One approach to polyglot persistence simplification is through the use of a 

universal REST-based API.  A REST-based approach to persistence across one or 

many database-as-a-service systems (cloud-based databases) was first proposed by 

Haselmann et al [60].  They acknowledge the growing variety of DBaaS vendors and 

APIs and stress the need for a common access standard based on REST.  The goals 

of their proposed API are to be flexible, exchangeable, and comparable.  They 

describe ways to attack these desired attributes by focusing on entity handling, 

schema definition, and querying.  The API allows for the persistence and retrieval of 

any entity through reserved URIs such as “/schema” and “/queries” where the 

developer would register a series of schemas and queries to be enforced and used by 

the application.  Attributes of stored entities can be retrieved through the use of 

XPath expressions under the reserved URI “/xpath”.  The paper does not provide an 

implementation of the API and, as stated by the authors, “...is particularly meant as 

a basis for further discussion of the general notion of a universal DaaS-API”.  Aside 

from the lack of API implementation, the work does not discuss some very complex 

issues.  In particular, developing a strategy for the decomposition of an object graph 

for storage in relational and non-relational systems is non-trivial and critical to 

successful adoption of the proposed API.  Additionally, the focus on schema 

development and enforcement as a primary aspect of the API is a poor choice for the 
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purposes of this dissertation: many large-scale data stores lack schemas and are 

able to provide high degrees of flexibility because of it.  Additionally, the notion of 

ad-hoc querying and query languages beyond those specified in the paper is largely 

ignored, forcing the user to register queries with the “/queries” endpoint before 

being able to execute them and only supporting SQL as a query language.   

Extending upon the universal REST-based API proposal of Haselmann et al. 

is the ORESTES system by Gessert et al. which provides a practical 

implementation of a unified, REST-based storage and access API for four popular 

NoSQL data stores (Versant, db4o, Redis, and MongoDB) [61].  While a primary 

motivation for the system is improving network latencies for applications accessing 

multiple DBaaS systems, the ORESTES middleware also provides a REST-based 

implementation for accomplishing polyglot persistence.  The resulting API appears 

to expose an interface similar to Haselmann et al. but with a variety of additions, 

including caching and support for transactions.  In a subsequent paper, they detail 

their efforts towards a unified REST API for DBaaS and briefly describe the notion 

of a Polyglot Persistence Mediator, a system component that “routes data to 

different storage backends based on declarative SLAs.”  The prototype 

implementation described in the paper is capable of routing entities to either the 

MongoDB and/or Redis data stores.  Of interest is the authors’ choice to allow the 

user to specify field-level boundaries on latency, availability, and replication factors 

in a declarative way.  Issues concerning latency are certainly important when 

working with a variety of Cloud providers and allowing thresholds to be set in a 
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declarative way makes these otherwise non-trivial guarantees largely transparent 

to the user.  While ORESTES is a significant advancement over the work proposed 

by Haselmann et al., it reflects some critical design choices that make it difficult to 

extend for the purposes of this dissertation.  First, increasing the accessibility of 

polyglot persistence for the software engineer is not the primary motivation for the 

system.  As such, the system designers developed an independent system that must 

be deployed and maintained in addition to the application and data storage 

systems, thereby adding to the complexities already present when adopting 

multiple data stores and adding additional overhead in the case of cache misses 

during entity retrieval.  The authors’ implementation of a unified REST-based API 

for cloud data stores ignores the need for an abstraction of the querying languages 

of each data store, leaving it up to the user to understand the intricacies of each.  

Similar to the schema constraints imposed by Haselmann et al., the ORESTES 

system enforces schemas on schema-less data stores, while going even further to 

provide transactions on top of systems that lack transaction support.  While their 

prototype looks promising, again, the primary system motivator is SLA fulfillment, 

not end user accessibility of polyglot persistence. 

Polyglot persistence not only introduces complexities associated with data 

persistence but also with data access (e.g., retrieval and querying).  As discussed by 

Gessert et al., one approach to making the retrieval of data from a variety of 

systems more accessible is to automatically route access requests to the “best” store, 

based on some set of criteria.  One system developed by Lim et al. focuses 
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specifically on the implications of polyglot persistence in relation to query support 

[62].  Their system, Cyclops, is a concrete implementation of an approach they refer 

to as DBMS+ that focuses on providing unified query support for Esper, Storm, and 

Hadoop.  The choice of these systems is interesting because of the mix of stream 

processing and batch oriented interfaces.  When the user submits a query to the 

DBMS+ system, it is routed to the best system for the task.  The researchers 

accomplished automatic routing by developing a query language that allows their 

system at run-time to choose between available query processing frameworks.  As 

with ORESTES, the user is able to declaratively register execution requirements 

with the system.  Doing so allows the user to easily describe what performance they 

require without implementing complex system logic.  The authors’ also take an 

“imperial” approach to implementing their query API, which they believe gives 

them an advantage over a federated approach by providing “full control of what gets 

executed and how”.  A federated approach, in contrast to an imperial approach (i.e., 

direct execution engine access), makes use of the storage system-specific query 

language, possibly introducing errors during query translation.  An imperial 

approach to polyglot persistence—if imperial access were provided by all vendors—

is extremely interesting and, as shown by Lim et al., could greatly enhance 

accessibility to application developers while decreasing the effort needed to access 

many data stores simultaneously.  A limitation of the imperial approach is that 

offering an expert user extension points into an underlying system becomes difficult 

as a result of bypassing the system specific query language. 
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While the work discussed here is an important first step toward providing 

abstractions on top of the inherent complexities of working with heterogeneous 

systems at scale, the work contributed by this dissertation offers a different 

approach.  We are not primarily motivated by issues of performance or the creation of 

a new language or system, but by the need for expressive patterns that eliminate the 

tight coupling of an application to its data stores.  As far as we are aware, we are 

among the first members of the software engineering community to not only 

acknowledge the lack of accessibility provided by these technologies, but to actively 

work towards rectifying it.  To do so, we leverage previous work in the area of 

enterprise architectures and patterns for one-size-fits-all systems, and work to 

adapt them to polyglot persistence systems.  The contributed work differs from 

others described in this chapter by focusing on limiting the accidental complexities 

of adopting these technologies, not only the practical matters associated with 

system performance.  We believe this approach results in greater accessibility of 

these technologies, allowing software engineers to focus on the essential difficulties 

of software development.  
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CHAPTER 5: Evolution of the Persistence Tier 

The development of new persistence architectures for aiding in the utilization 

of specialized persistence technologies is needed to encourage software engineers to 

focus on the non-functional attributes of most importance to their application.  A 

software application typically fulfills the functions of capturing (i.e., collecting and 

storing), understanding (i.e., analyzing), and presenting (i.e., reporting) data (see 

Figure 5-1).  To satisfy each function, application technologies must be chosen 

carefully.  Technologies provided by distributed systems researchers are designed 

and evaluated with scalability, availability, and durability as primary drivers, 

leaving the application developer to choose from a set of complex technologies to 

fulfill each function of the application. 

 
Figure 5-1.  Application functions with associated technology trade-offs. 
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In addition to scalability, availability, and durability, we propose that 

software engineers make technology choices based on accessibility and flexibility.  

As discussed in Chapter 3, software engineers often choose technologies based on 

these two attributes.  This behavior follows as a practicing software engineer is less 

a scientist than engineer, primarily concerned with task completion rather than 

pure scientific pursuit.   

The movement away from one-size-fits-all data stores and towards 

specialized data stores has allowed applications to adapt to significant increases in 

data and usage.  However, adopting a heterogeneous architecture can be 

overwhelmingly complex for an application developer.  Each specialized system 

provides the end user with a different set of data storage and access APIs.  In 

addition to mastering a variety of interfaces, the application developer must also 

understand how to modify the data model for acceptance by each system, which 

requires a deep understanding of the underlying distributed system.  To 

successfully use many of these systems, the software engineer must move past the 

tools of object oriented analysis and design, and force themselves into the realm of 

the system designer whose focus is on performance and storage of the data, not 

necessarily providing accessible APIs. 

This dissertation details the development of an architectural pattern and 

associated framework that provides accessible and flexible polyglot persistence.  This 

work extends the abstract concept of polyglot persistence, which encourages the use 

of many specialized data stores, by providing an expressive and extensible 



 37 

implementation.  Pairing polyglot persistence with extensions to enterprise 

architectural patterns allows for the encapsulation of logic related to persisting and 

retrieving objects and relationships from one to many data stores while also 

decoupling the application from data store specific implementation details.  Pairing 

in this manner enables the adoption and abandonment of data stores without the 

need for the entire development organization to gain expertise in the intricacies of 

each data store utilized throughout the architecture. 

5.1 Traditional Enterprise Architecture  

A traditional enterprise architecture will isolate application code (e.g., 

controllers, validators, etc.) from business logic via a service tier [63].  The service 

tier, in turn, leverages a Repository pattern to manage persistence details.  

Repositories encapsulate all knowledge related to persisting and retrieving objects 

and relationships to and from data stores.  Repositories typically accept and return 

data models, isolating the application from the details of the underlying persistence 

framework (e.g., JPA, JDBC, ODBC, ActiveRecord, etc.).  The Repository pattern, 

shown via sequence diagram, is given in Figure 5-2. 
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Figure 5-2.  Adapted from the Repository pattern as described by Fowler 

In Fowler’s representation [64], [65], the client interacts with the Repository 

to persist and query the underlying storage mechanism which could range from an 

in-memory collection to a database or distributed data store.  The Repository 

exposes interfaces to the client that accept and return data models, masking the 

details of data mapping and allowing the replacement or extension of persistence 

technologies without forcing changes through dependent code paths.  It is common 

practice to implement a Repository per domain object.  An example of a 

homogeneous enterprise architecture, utilizing a service and persistence tier (i.e., a 

three-tier or multi-tier architecture), is shown in Figure 5-3. 
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Figure 5-3.  A traditional homogeneous enterprise architecture. 

In the above architecture, each Repository only interfaces with one 

persistence technology such as a relational database.  This is an accepted initial 

architecture for SaaS applications as it provides the application with isolation of 

concerns at each level of the software stack, and allows the developer to pass a 

domain model from tier to tier similar to the Model-View-Controller [64] concept, 

also widely used throughout SaaS applications.   

5.2 Traditional Multi-Data Store Approach 

As an application matures and requires the use of a specialized storage 

system, the persistence or service tier must be augmented to interface with multiple 

persistence technologies.  Adding additional responsibilities to Repositories or 
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Services achieves varied results.  This approach primarily violates the single 

responsibility principle [66].  As detailed previously, the service tier is designed to 

handle business logic and the Repository is primarily concerned with the details of 

persistence.  This approach to polyglot persistence is provided for reference in 

Figure 5-4. 

 
Figure 5-4.  Ad-hoc polyglot persistence. 

While this approach can lead to successful polyglot persistence, as 

experienced by Project EPIC [19], [63], the onus is on the software engineering team 

to understand the nuances of each underlying data store and associated persistence 

framework.  Although the above architecture isolates the application from the 

complexities of persistence among multiple data stores, it tightly couples the 
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Repositories or Services to more than one persistence framework, which makes 

working with multiple data stores brittle and difficult to adopt or abandon.  

Additionally, this approach has the undesired side effect of putting a great deal of 

intelligence into a single Service or Repository, depending on where the developer 

chooses to embed this behavior.  Each Service or Repository will be responsible for 

understanding how to convert data models, interact with multiple stores, and 

reconcile differences among data stores.  While this approach may be maintainable 

for a small number of data stores, it does little to mitigate the complexities 

associated with implementing a large number of data stores.  Combining all of these 

responsibilities into otherwise straightforward components is a clear violation of the 

single responsibility principle. 

5.3 Traditional Persistence Architecture Design Constraints 

It is the goal of this dissertation to enable the adoption of any number of 

stores without vast increases in complexity for the software engineer.  The number 

of specialized systems available to application developers is likely to continue to 

increase, not decrease, and the software engineer must be afforded the tools to 

mitigate the inherent complexities of adopting such an architecture.  To accomplish 

this, the enterprise architecture pattern must be enhanced to take advantage of 

polyglot persistence.  As the isolation of data mapping through persistence 

frameworks already occurs within the persistence tier, this tier provides a 

reasonable point of extension.  What is required of this extension is the ability for 

the persistence tier to continue to accept and return a data model regardless of the 
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underlying storage system.  Doing so will allow applications to adopt polyglot 

persistence without incurring the cost of the redevelopment of their existing 

Services, thereby increasing accessibility and providing the application with the 

flexibility of multiple, possibly redundant, data stores.  Designing, implementing, 

and maintaining such an architecture is non-trivial and fraught with challenges. 

Satisfying the need for the persistence tier to accept and return a data model 

to its client—required to provide accessibility—is not straightforward when 

implementing polyglot persistence.  When using one data store, maintaining this 

contract between the client and the Repository is trivial.  There is one strategy for 

data model decomposition and reconstitution provided by the application developer 

or the underlying persistence framework.  Extending this contract across multiple 

persistence frameworks becomes complex as each data store exposes its own 

strategy for data mapping.  Numerous systems enforce schema and data 

normalization (e.g., relational data stores) while others encourage denormalization 

(e.g., columnar, key-value).  A reasonable abstraction of how each data store 

requires its data model to be formatted for effective storage is shown in Table 5-1. 
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Table 5-1.  Collection based representations of data store data models. 

Without proper isolation, these data mapping strategies are implemented in 

an ad-hoc manner, blending separations of concern and limiting knowledge reuse.  

To decrease the complexities associated with data model transformations, it is 

helpful to abstract these details into reusable components, decoupling them from 

the Repository.  To accomplish this abstraction, each component must understand 

the type of data store being utilized when performing domain model decomposition.  

While relational data stores may be more straightforward due to technologies such 

as object relational mappers, similar technologies are not provided by all data 

stores.  Understanding the analogous implementation of a primary key or query 

criteria in a columnar, key-value, document, or network data store is difficult and 

dependent on use case.  It is common to use complex object identifiers in non-

Class Data Model Backing Collection Interface 

Relational Table Array[row][column] add(), 
remove() 

Columnar Row Map.Entry<[row key],  
Map<[column name], [value]>> 

put(), get(), 
del() 

Key-value Hash Map<[key], [value]> put(), get(), 
del() 

Document Document Map<[field name], [value]> put(), get(), 
del() 

Network Vertex,  
Edge 

Map<[property name], [value]>,  
Map<[from id], [to id]> 

put(), get(), 
del() 
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relational stores that can communicate a great deal more information than a simple 

incremental counter.  In Project EPIC (Empowering the Public with Information in 

Crisis), the composite key used to store data in Cassandra is a combination of a 

number of factors chosen by its application developer including a social media 

search term, the current date, and a fragment of the MD5-hash of the content being 

stored, all delimited by colons (e.g. “flood:2015106:a”).  In addition to providing a 

great deal of information about the content being stored, the Project EPIC key, 

through the hash fragment, also determines how data is distributed among the 

cluster for well-balanced storage.  By slightly modifying an otherwise static row key 

with a dynamic hash fragment, hot spots are avoided because a slight, but 

predictable, variation in row key forces Cassandra to place the key throughout the 

cluster instead of on a single node.  Creating an abstraction capable of adapting to 

such a use case is indeed difficult. 

The next chapter introduces and elaborates on the Diamond architectural 

style for polyglot persistence.  This architectural style [67] has been developed to 

represent how the persistence tier of a modern enterprise application should work 

to reduce the amount of work required to adopt an unknown number of data stores.  

The Diamond architecture provides a set of abstractions that require the 

application developer to construct the persistence tier of their application in an 

extensible way, allowing the adoption or abandonment of data stores while also 

isolating any necessary code modifications from the rest of the application.  
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CHAPTER 6: The Diamond Architecture 

This chapter introduces the Diamond architecture for polyglot persistence.  

The Diamond architecture is a set of abstractions developed by the author that, when 

utilized in combination, greatly reduce the level of effort required to extend the 

persistence tier of an application to interface with an unknown or varying number of 

data stores.  The Diamond architecture is designed to not only augment a 

traditional persistence architecture but to further serve as an archetypal style 

during application inception. 

6.1 Overview 

Traditional enterprise applications rely on persistence tiers that interface 

with a single data store type.  It is the responsibility of that data store to serve as 

the one-size-fits-all solution for the persistence needs of the application.  Although 

the data store itself may provide mechanisms for scalability, availability, and 

durability, the persistence tier is often architected to interact with one and only one 

data store.  The Diamond architecture recognizes the need to design for an unknown 

or varying number of data stores and emphasizes the concepts of accessibility and 

flexibility for data store utilization.  Designing the persistence tier to interface with 

1 to N data stores not only allows the application to easily adopt new and highly 

desirable data store technologies, but also provides the application with the ability 

to incorporate scalability, flexibility and durability within the persistence tier. 
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The Diamond architecture encourages the reuse of the existing traditional 

(i.e., three-tier architecture) architectural components, honoring contracts already 

established between the application, service, and persistence tiers.  A traditional 

enterprise persistence architecture can be adapted to a Diamond architectural style 

by, at a high level, leveraging two novel abstractions within the persistence tier.  

Transitioning to a polyglot persistence architecture through the Diamond 

architecture is done additively, in an effort to limit changes to existing code paths. 

This dissertation describes the design and implementation of a polyglot 

persistence architecture in its entirety.  As described in the previous section, this is 

a non-trivial task, but one that has the potential to make a significant contribution 

in the area of software engineering for large-scale, heterogeneous data-intensive 

systems.  The rest of this chapter describes the design of such an architecture.  

6.2 Approach 

We are beginning with the popular enterprise application architecture, or 

three-tier architecture, to form our initial design constraints [68].  In this approach, 

an application is composed of an application tier, a service tier, and a persistence 

tier.  Often the persistence tier is implemented as a Repository pattern that is 

responsible for interacting with an external data store (e.g., a relational database).  

Data is passed between tiers using a rich data model that can be easily mutated 

along the way.  Communication between the application and the data store is done 

through a persistence technology (e.g., JDBC, ORM, etc.).  Applying these 

constraints to our design forces the architecture towards acceptance of a rich data 
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model while additionally working within the constraints of existing method 

contracts provided by Services.  The ideal design would work within these 

constraints, requiring very few architectural changes.  The primary design 

constraint is that of a single point of entry and egress into the Service (e.g., the 

application tier expects a traditional interface for persistence, regardless of the 

number of underlying data stores).  A successful design will allow for this constraint 

but also easily adapt to an unknown number of data stores. 

We begin with a naive approach to polyglot persistence provided by the 

traditional enterprise architecture.  To adapt to multiple data stores through this 

approach, each data store is communicated with directly through complex Services 

or Repositories, as shown in Figure 5-4 of the previous chapter.  A slightly less 

naive approach is to develop one Repository component per data model destined to 

be stored in a particular data store. 
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Figure 6-1.  Repository per domain object per data store architecture. 

Implementation of a more informed architectural approach presents three 

distinct challenges.  First, the Repository pattern, as described by Fowler, ensures 

isolation of persistence from the client but requires an increase in intelligence to 

properly route data between different data stores.  Abstracting this intelligence in a 

way that maintains existing contracts between the persistence and service tiers, 

while preserving the desire to keep data store-specific persistence logic decoupled 

and straightforward, is difficult.  Second, data model decomposition and 

reconstitution is required to persist to and read from multiple data stores with 

varying data models.  Third, invoking multiple Repositories incurs the cost of 

needing to handle multiple results, which can be complex.  An ideal architecture for 

polyglot persistence would provide reasonable solutions for each of these challenges 

while also allowing extension in areas where the end user may have unanticipated 
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needs.  Each of these challenges, as addressed by the Diamond architecture, will be 

discussed, in detail, throughout the remainder of this chapter. 

6.3 Diamond Architectural Components 

6.3.1 Command 

The Command pattern is documented by Gamma et al. [50] as a behavioral 

design pattern.  Due to its broad applicability, the Diamond architectural style has 

been influenced directly by the Command pattern.  The Command pattern is shown 

in Figure 6-2. 

 
Figure 6-2.  Command pattern [50]. 

The Command pattern is primarily used to isolate behavior needed by a class 

for future execution.  A Command, as defined by Gamma et al., is responsible for 

implementing a single method, execute(), which has no return value and, when 

invoked, performs a discrete unit of work.  The interface is provided in Figure 6-3. 
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Figure 6-3.  Conventional Command interface. 

In this way the Command pattern creates a loosely coupled processing 

element that holds state.  The Diamond architecture makes use of this pattern to 

encapsulate typical persistence scenarios such as CRUD operations in concrete 

Command implementations.  Using Commands in this manner forces loosely 

coupled and highly reusable persistence logic throughout the application.  For the 

purposes of polyglot persistence it is necessary to enhance the signature of the 

Command interface.  The Diamond architecture recommends the Command 

interface shown in Figure 6-4. 

 
Figure 6-4.  Diamond Command interface. 
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The Command pattern recommended by the Diamond architecture affords 

the ability to accept an arbitrary input and return an arbitrary output.  Although 

not required, this small change is recommended in an effort to avoid forcing the 

Command to hold the state of objects (input and output) that will likely change with 

each invocation.  Adding input and output to the interface allows the Command 

invoker to pass context sensitive input to the Command and have the Command 

respond with context sensitive output.  Enabling this behavior at the method level, 

instead of during object construction, eliminates the need to construct a new object 

as input changes.  In this way, many Commands with distinct behavior can be 

allocated only once, referenced later, and invoked as needed. 

6.3.2 Runner 

The Runner architectural component is responsible for invoking an arbitrary 

set of Commands.  The Runner accepts a collection of Commands and then invokes 

them based on its defined behavior.  The Runner is meant to encapsulate the 

manner in which Commands are executed.  This responsibility keeps the Runner 

ignorant of the capabilities of the Commands and leaves it to focus on how to 

execute an arbitrary series of Commands.  The Runner interface is straightforward 

and requires that the implementer accept a collection of Commands and input to 

pass to each Command during its execution.  Running multiple Commands will 

produce multiple results; therefore, the implementer is additionally required to 

return the total set of results occurring from Command execution.  The Runner 

interface is shown in Figure 6-5. 
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Figure 6-5.  The Runner interface. 

In practice, it would be typical to provide, at a minimum, the ability to run 

Commands consecutively and concurrently.  Other interesting Runners are 

described in Chapter 7.  The Runner fulfills the role of the Invoker as described by 

Gamma et al.  Encapsulating the details of invoking a Command enables code reuse 

in complex scenarios such as the concurrent execution of Commands.  

6.3.3 Data Model Converter 

The data models provided by each data store vary greatly among data store 

implementations.  To effectively persist and retrieve data from each store, data 

models passed from the application or service tiers require modification.  Data 

models must be forward converted in preparation for persistence by a data store.  

During forward conversion, the original data model may lose fidelity via attribute 

removal or be transformed in other ways to adapt to effective storage by each store.  

Backward conversion is the forward conversion process in reverse, where an 

attempt is made to return a data model to the client that may have been pieced 

together from multiple underlying data stores.  Isolating this responsibility from 
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the Repository allows the Repository to remain focused on delegation and 

persistence details.  The Converter interface is implemented by the user, likely 

through callbacks, which decouples the rest of the architecture from domain model 

conversion.  Ideally this conversion logic is reused throughout the application where 

required.  Issues of data model versioning and migration will need to be addressed 

during implementation.  As discussed by Stonebraker, in the future, all but the 

most complex data transformations might be handled without the need for a 

programmer through reuse of common use cases or integrations with external tools 

[69].  Sensible default Converters will provide the ability to convert a reference 

based data structure to an embedded structure and vice versa.   

 
Figure 6-6.  The Google Guava Converter interface. 

For the sake of reuse, the Converter interface shown in Figure 6-6 is that of 

the Google Guava framework [70].  This interface has been found by the author to 

be well designed and applicable to many usage scenarios, such as persistence in the 

case of the Diamond architecture.  Another Converter that provides the 

functionality to forward and backward convert data could certainly be used, but for 

the purposes of this dissertation, we will use the interface provided by the Google 
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Guava framework.  To justify our use of the Converter, it is helpful to describe an 

example.  Given a data model where a User owns many Documents, we will 

illustrate the conversion process in Figure 6-7. 

 
Figure 6-7.  An example data model conversion. 

In the example above (Figure 6-7), the User data model is passed to two 

Converters that convert the data model for storage in relational and key-value data 

stores.  The UserRelationalConverter performs no operation in this example, 

assuming the underlying persistence framework will accept the User data model as 

is (e.g., via the use of an object-relational mapper).  The UserKeyValueConverter 
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implementation converts the data model from a reference-based structure to an 

embedded document model representation that can easily be persisted to a key-

value data store.  To accomplish this conversion, the UserKeyValueConverter 

creates a composite key from the name and ID of the User and serializes the full 

data model to JSON to store as a value.  Although the actual behavior of each 

converter will differ by data model and use case, this component attempts to isolate 

these details from the rest of the architecture. For this example, the backward 

conversion behavior would perform the analogous operations in reverse. The 

UserRelationalConverter would pass the returned object graph from the object-

relational mapper back to the service tier that requested it. The 

UserKeyValueConverter would perform the forward conversion process in reverse, 

using the key to create a User object with the appropriate ID and name and the 

information in the embedded documents attributes to recreate a collection 

containing a Document with the correct ID and title. The resulting object graph 

would match the one that was originally handed to the Converter for the forward 

conversion process. The important lesson here is that these types of conversions can 

be codified to handle a significant number of real-world data models and that 

straightforward extension points can be added to default Converters to allow 

software engineers to handle additional object models that require customization to 

be converted accurately.  



 56 

6.3.4 Reconciler 

Invoking more than one Command will produce more than one result or 

results set.  A core principle of the Diamond architecture is allowing an application 

to adopt additional data stores without forcing contract changes further up in the 

application stack (e.g., the service and application tiers).  To achieve this, the 

persistence tier must “fan-out” using a Runner to interact with multiple data stores 

and “fan-in” before returning a result to the greater application stack.  To 

accomplish this fan-in behavior, the architecture provides for a Reconciler 

component that is responsible for this behavior.  A Reconciler is required to make 

decisions about how to map the multiple results produced by invoking a number of 

Commands into a single result.  The interface for a Reconciler is shown in Figure 

6-8.  The Reconciler reconcile() method accepts a list of results and is required to 

return a single result. 

 
Figure 6-8.  The Reconciler interface. 

In practice, a Reconciler will have a variety of context sensitive behavior.  It 

may be favorable to apply an order of precedence when multiple results have been 

returned by multiple data stores (e.g., take from relational first, columnar second, 
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key-value third, etc.).  It is also possible to perform a merge of all the results, 

forming a composite result that is a combination of attributes stored across 

disparate data stores.  These are just a few of the possible use cases for such a 

construct.  Although similar to the Reduce described in MapReduce, the Reconciler 

is meant to force the transformation of many results to a single result, not apply an 

arbitrary transform to the results. 

6.3.5 Pipeline 

In the context of the Diamond architecture, a Pipeline is a construct that has 

a single point of entry and egress, much like a Command or Service, and is typically 

responsible for maintaining a collection of Commands.  The Pipeline is, as described 

by Gamma et al., the Client for the Command pattern.  In the Diamond architecture, 

this is largely an implementation detail rather than a constraint.  Because it is 

common for Commands to not hold state in our architecture, they may be created 

anywhere in the application and added to a Pipeline at any time during the 

application lifecycle.  A Pipeline is responsible for implementing a single method, 

run(), which begins execution of the processing elements it contains.   However, it 

will also likely provide the ability to add Commands to its state.  Figure 6-9 

provides the high-level Pipeline interface. 
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Figure 6-9.  The Pipeline interface. 

The reader will note that the definition for a Pipeline and a Command are 

nearly identical.  This is intentional.  The Pipeline is a container of Commands that 

similarly accepts input and returns output.  In practice, this constraint is used to 

force the Commands present in the Pipeline to accept and return the same output 

as the Pipeline.  

Adding onto the Pipeline construct, we define the DiamondPipeline.  A 

DiamondPipeline is a Pipeline that requires a Runner and a Reconciler, which 

provides the “fan-out” and “fan-in” behavior that lends the Diamond architecture its 

name.  The conceptual DiamondPipeline architecture is depicted in Figure 6-10. 
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Figure 6-10.  The DiamondPipeline. 

As can be seen in Figure 6-10, the DiamondPipeline is composed of a Runner, 

a collection of Commands, and a Reconciler.  Once defined, the DiamondPipeline 

can be used throughout the application, encapsulating all the necessary behavior to 

interact with any number of data stores.  Although a Pipeline can be executed 

directly by a Service in the service tier, it may still be helpful to provide a 

Repository that contains many Pipelines. 
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6.3.6 RepositoryFacade (Optional) 

To extend the Repository pattern to accommodate polyglot persistence, the 

existing Repository in use by a Service must take on additional responsibilities.  

Ideally, the polyglot Repository adheres externally to the responsibilities imposed 

by Fowler but internally performs similarly to a Facade pattern [50] thus, wrapping 

the complexities associated with delegating persistence tasks.  The client (i.e., 

service tier) invokes methods on the RepositoryFacade, which, in turn, delegates to 

the Pipeline that interacts with traditional Repositories through Commands 

developed for each underlying class of data store as in Figure 6-11. 

 
Figure 6-11.  DiamondPipeline with RepositoryFacade. 
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This implies the creation of a Repository per data store class (e.g. relational, 

columnar, key-value, document, and network).  Each sub-Repository would be 

configured with the specific persistence framework for each data store in use.  In 

practice, the configuration of these Repositories will likely occur via an inversion of 

control framework  (a.k.a. dependency injection), alleviating the need to instantiate 

and configure Repositories, Commands, and Pipelines before each use. 

6.3.7 Final Architecture 

The design of an architecture for polyglot persistence involves the extension 

and creation of non-obvious, architectural patterns within the persistence tier.  The 

motivation behind the Diamond architecture is the desire to maintain a simple, 

data model-based persistence contract between the service tier and the greater 

application.  Doing so allows business logic to be isolated within the service tier and 

persistence details to be confined to the Repository.  To the greatest extent possible, 

the service tier is not to be concerned with the details of persistence, for a single 

data store or multiple data stores.  Through the use of Converters, the data model of 

the application can be converted for use by a variety of stores without complicating 

the delegation responsibilities of the RepositoryFacade.  The final Diamond 

architecture is provided in Figure 6-12. 
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Figure 6-12.  The Diamond architecture. 

To provide a clear understanding of the common communications between 

the architectural components, a sequence diagram describing the interactions of 

each component is shown in Figure 6-13. 
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Figure 6-13.  Diamond architecture sequence diagram. 

The architecture is designed to increase both the accessibility and flexibility 

of large-scale data stores.  To achieve accessibility, the architecture focuses on 

maintaining existing concepts of enterprise architectures and preserving the desire 

of application developers to work with rich data models.  Flexibility is accomplished 

by allowing the application developer to easily adopt or abandon data stores.  These 

attributes are of the utmost importance to application developers as it is highly 

likely they will be confronted with an increasing, not decreasing, amount of 

specialized technology choices in the future.  
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CHAPTER 7: Implementation: The Machinist Framework 

The Diamond architecture is intended to be easily implementable in a variety 

of languages.  For the purposes of this dissertation the reference implementation 

was developed in the Java programming language [71].  Java was largely chosen 

due to its widespread adoption among enterprise software organizations as well as 

the increasing number of Java-based data stores.  Regardless of language 

preference, the overall Diamond architecture is designed to afford accessible 

polyglot persistence for the implementer. 

7.1 The Machinist Framework 

The Java-based implementation of the Diamond architecture described by 

this dissertation is produced as the Machinist framework, the name originating 

from a machinist being a person who uses machine tools to make or modify parts of 

a greater system.  This name is meant to enforce the belief that software 

architectures are moving away from one-size-fits-all data stores and towards data 

stores (i.e., tools) built specifically for specialized tasks (e.g., information retrieval, 

graphs, analytics, real-time streaming, etc.).  The remainder of this chapter focuses 

on describing the Machinist framework as a concrete implementation of the 

Diamond architecture. The full class diagram for this framework appears in 

Appendix B. 
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7.1.1 Command 

The Machinist framework offers implementations of Commands required by 

typical CRUD use cases.  These Commands encapsulate common behaviors 

necessary when persisting and retrieving data from a data store.  The 

implementation of these commonly occurring usage scenarios will be discussed, in 

detail, through the remainder of this section. 

7.1.1.1 Persist 

Persistence logic in an enterprise application is isolated from the rest of the 

application through use of the Repository pattern.  The Diamond architecture 

recommends that existing and newly developed Repositories be wrapped by a 

Command which provides a callback for the execution of Repositories after data 

model conversion.  The workflow of a persist Command is shown below: 

 

1. Forward convert input for persistence 

2. Pass converted input to Repository through a callback for persistence 

3. Backward convert Repository result and return the converted result 

 

Although the persist Command does not hold onto input or output as state, it 

does require a Converter and a Repository callback during initialization.  The 

Converter is used to convert domain objects forwards into a form suitable for use by 

the callback and wrapped Repository for persisting.  The class diagram for the 

SaveCommand is shown in Figure 7-1. 
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Figure 7-1.  The SaveCommand class diagram. 

An example implementation of the SaveCommand provided by the Machinist 

framework is shown below. 

 
Figure 7-2.  The Machinist framework SaveCommand implementation. 

The code given is straightforward and simply applies the workflow outlined 

previously in this section.  For implementation purposes, Machinist relies on Google 
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Guava for Converter and Function implementations.  This is not required but 

leveraging Guava-provided implementations will allow those who have already 

implemented data model Converters or useful Functions to utilize their existing 

implementations.  The code shown in Figure 7-2 enables the enforcement of 

constraints through the use of Java generics.  The application developer is required 

to provide two generic types when instantiating the SaveCommand, one for input 

(I), the other for the converted or intermediate (M) value.  The goal of this 

enforcement is to align the Converter output with the input required by the 

Repository.  In this manner, a data model can be adapted to any Repository 

signature through conversion and allow the conversion to enforce type safety 

through generics.  Although not shown separately, the update workflow is typically 

the same or similar to the persist workflow. 

7.1.1.2 Read 

 Reading from a data store presents a variety of challenges that are often 

associated with querying.  The Machinist framework makes no effort to provide the 

user with a single, unified query interface.  Instead, the framework relies on each 

Repository to understand how to interact with its underlying data store.  Through a 

Repository callback, any method exposed on the Repository can be accessed by the 

Command that holds on to the callback.  If needed, custom Converters that 

understand how to create complex, data store specific, queries using the data model 

provided to the Converter can be implemented.  When retrieving objects from a data 

store, it is common to only need a forward conversion to generate a key or complex 
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query.  For this reason, Commands responsible for retrieving data from data stores 

receive an additional argument during construction, which is responsible for 

providing the Command with a way to construct keys or queries for data retrieval.  

The enumerated workflow for read Commands is listed below. 

 

1. Generate a lookup key or complex query from input 

2. Pass the generated lookup or query to Repository through a callback 

3. Backward convert Repository result and return the converted result 

 

The Machinist implementation of this workflow is similar to that of the 

SaveCommand code shown in Figure 7-2.  The additional constructor argument 

provided to the FindCommand is a Guava Function that is responsible for 

generating a lookup key or complex query from the provided input.  The class 

diagram and implementation code is provided in Figure 7-3 and Figure 7-4 below. 

 
Figure 7-3.  The FindCommand class diagram. 
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Figure 7-4.  The Machinist framework FindCommand implementation. 

The Machinist implementation of the read workflow again uses the Google 

Guava Converter and Function interfaces to provide key generation, data model 

conversion, and a Repository callback.  Java generics are used to provide 

enforcement of data types.  The FindCommand enforces key or query (ID), input (I), 

intermediate (M), and output (O) types. An example of a callback for a 

FindCommand is shown on the third page of Appendix A; this callback shows how 

the search functionality for the example application is implemented for the 

relational data store. Examples of other callback functions appear throughout the 

code samples of this dissertation. For example, the solid outline-highlighted sections 

of code in Figures 9-5 and 9-7, are instances of commands being configured with 

callbacks.  

7.1.1.3 Delete 

The recommended delete workflow is a simplified read workflow.  Delete 

implementations require the ability to generate a lookup key or complex query 
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criteria to locate candidate results, but they do not require data model conversion, 

as they do not return results.  The delete workflow is as follows: 

 

1. Generate a lookup key or query from input 

2. Pass generated lookup to Repository through a callback 

 

The Machinist implemented delete workflow uses two functions, a lookup key 

or query criteria generator and a Repository callback.  It provides generic type 

enforcement for input (I) and keys (ID).  The class diagram and implementation is 

shown in Figure 7-5 and Figure 7-6. 

 
Figure 7-5.  The DeleteCommand class diagram. 
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Figure 7-6.  The Machinist framework DeleteCommand implementation. 

7.1.1.4 Many or All 

Applications often require the persistence or retrieval of more than one object 

at a time.  This allows the application to take advantage of batch persist and read 

operations provided by data stores.  To persist more than one entity at a time, the 

Machinist SaveAllCommand implements a modified persist workflow.   

 

1. For each input: forward convert input for persistence 

2. Persist batch of converted entities using Repository through callback 

3. For each result: backward convert Repository result 

4. Return converted results 

 

To retrieve multiple objects, the read workflow is also slightly modified.  The 

following workflow is appropriate for retrieving multiple results from a data store. 
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1. Generate lookup key or complex query from input 

2. Pass generated lookup to Repository through callback 

3. For each result: backward convert Repository result 

4. Return converted results 

 

The Machinist implementations for each workflow are given in Figure 7-7 

and Figure 7-8 for reference.   

 
Figure 7-7.  The Machinist framework SaveAllCommand implementation. 
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Figure 7-8.  The Machinist framework FindAllCommand implementation. 

The implementations make use of the same constructs (e.g., Functions, 

Converters, and Repository callbacks) as the previous Commands, but they enforce 

slightly different generic types, requiring java.lang.Iterables to handle multiple 

inputs and outputs. 

7.1.2 Runner 

To provide flexible methods of invoking commands, the Machinist framework 

implements three useful Runners.  Runners provided by the Machinist framework 

are capable of executing Commands consecutively or concurrently.   
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Figure 7-9. Machinist framework Runner implementations. 

The concurrent implementations provide blocking or non-blocking behavior.  

If blocking, the results of each Command will be collected by the Runner and 

returned once all Commands have executed (i.e., the ConcurrentRunner behavior).  

If a non-blocking Runner is used, such as the 

TakeFirstNotNullResultConcurrentRunner, the first available result from any 

Command will be immediately returned, canceling any other Commands.  

 The default behavior for consecutive Runners is to block until the Command 

has completed execution.  Machinist provides two consecutive Runners.  The 

ConsecutiveRunner executes Commands serially, collecting all returned results as it 

goes.  The ChainedConsecutiveRunner also executes Commands serially but uses 

the output of the previous Command as the input for the next Command, eventually 
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returning the result of the last Command executed.  This behavior is helpful when 

executing trees of Commands. 

7.1.3 Reconciler 

Reconcilers are often highly application dependent, and, because of this, 

Machinist provides only one basic but useful implementation.  The default 

Reconciler returns the first non-null result from a set of results.  This basic behavior 

provides a reasonable “fan-in” behavior for the framework.  Many applications will 

need to implement more complex implementations (e.g., sort results via a 

Comparator, query an additional data source for metadata, etc.).  The class diagram 

for the FirstNotNullResultReconciler is shown in Figure 7-10. 

 
Figure 7-10.  The FirstNotNullResultReconciler class diagram. 

7.1.4 Pipeline 

Machinist provides a variety of Pipeline implementations that are intended 

to be applicable to a wide variety of production usage scenarios.  Although the high-

level interface is quite simplistic, the class structure provided by the Machinist 
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framework offers the user a large degree of expressivity and flexibility through 

composition.  In this section, we will provide an overview of each Machinist Pipeline 

and their anticipated usage scenarios. 

Machinist extends the top-level Pipeline interface, creating the 

CommandPipeline interface, which adds the ability to hold a collection of 

Commands to the top-level Pipeline.  The internal structure for this storage is a 

java.util.Collection as implemented by AbstractCommandPipeline.  Machinist 

Pipelines that extend the AbstractCommandPipeline use a java.util.ArrayList as 

the concrete implementation, but any java.util.Collection can be used.  ArrayList 

was chosen as the default to preserve execution order and allow the user to 

duplicate Commands if necessary.  Figure 7-11 shows the class diagram for the 

AbstractCommandPipeline. 
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Figure 7-11.  The Machinist Pipeline class structure. 

Pipelines that extend the AbstractCommandPipeline are not required to 

conform to the Diamond architecture, as the CommandPipeline does not require the 

use of a Runner and Reconciler.  The CommandPipeline interface is available to 

users of the framework that wish to use the Pipeline and Command concepts 

outside of the persistence tier.  Omitting the use of Runners and Reconcilers in the 

persistence tier is possible but not recommended. 

The recommended point of extension for users of the Machinist framework is 

the DiamondPipeline.  This Pipeline requires a Runner and a Reconciler upon 

initialization, which enforce a “fan-out” and “fan-in” behavior with each run of the 

Pipeline. This behavior is responsible for the Pipeline’s characteristic shape as 
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shown in Figure 6-10.  The DiamondPipeline class is not abstract and implements 

the run() method of Pipeline which simply delegates to the Runner and Reconciler 

given at initialization.   

 
Figure 7-12.  The Machinist framework DiamondPipeline class structure. 

Pipelines that extend the DiamondPipeline are straightforward to develop.  

Extension is typically accomplished through composition and is achieved by 

initializing a Pipeline with a custom Runner or Reconciler, which is exactly how the 

Pipelines of the Machinist framework are implemented.  There are a variety of 

Pipelines provided by the framework to satisfy commonly encountered production 

usage scenarios.  Each will be briefly detailed in the following sub-sections. 
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7.1.4.1 Consecutive Pipelines 

 
Figure 7-13.  The ConsecutivePipeline and SimplePipeline class diagram. 

The consecutive Pipelines run Commands in consecutive order using the 

ConsecutiveRunner.  Input is passed to each Command and the Runner collects the 

results.  The ConsecutivePipeline can be instantiated directly but requires that a 

Reconciler be provided through the constructor.  The SimplePipeline is an extension 

of the ConsecutivePipeline.  It utilizes the ConsecutiveRunner but defaults the 

Reconciler to the FirstNotNullResultReconciler.  The SimplePipeline is the most 

basic Pipeline available to an adopter of the Machinist framework.  
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7.1.4.2 Concurrent Pipeline 

 
Figure 7-14.  The ConcurrentPipeline class diagram. 

The ConcurrentPipeline invokes Commands simultaneously using the 

ConcurrentRunner.  By using the ConcurrentRunner, each Command is executed 

concurrently, but the Runner will block until all Commands have returned.  This 

behavior is implemented using the Java concurrency API (e.g., 

java.util.concurrent.Executors, Callable, etc.).  The results of the concurrently 

executed Commands are collected by the Runner and passed to the Reconciler by 

the Pipeline, which is user defined for this Pipeline.   



 81 

7.1.4.3 Flash Pipeline 

 
Figure 7-15.  The FlashPipeline class diagram. 

The FlashPipeline was developed to retrieve results via the fastest available 

method from any available data store.  A typical usage scenario is to concurrently 

query a number of data stores that hold similar information and return the first 

result available.  This behavior, similar to the ConcurrentPipeline, is implemented 

using the Java concurrency framework with the primary difference being the 

FlashPipeline returns the output of a Command as soon as one is available, without 

awaiting the completion of additional Commands.  For this reason, the user is not 

required to provide a Reconciler, as there will be only a single fastest result or 

results set.  The Reconciler used by the FlashPipeline serves as an additional null 

check but is largely a no-op. 
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7.1.4.4 Tiered Pipelines 

 
Figure 7-16.  The TieredPipeline and SimpleTieredPipeline class structure. 

When persisting to multiple data stores, the need to break persistence 

operations into tiers occurs frequently.  For instance, persisting to a relational 

database before any other data stores will assign a uniquely generated primary key 

to the data model.  Although this is not the only way to define a primary key for 

data model lookup, many systems already persist to a relational database, and 

doing so before persisting to additional data stores ensures that at least one copy of 

the data model has been persisted successfully with the added benefit of assigning a 

primary key.  Non-traditional classes of data stores, such as key-value and 

columnar, frequently make use of composite keys for entity lookup.  Already having 
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an identifier present on the data model allows it to be combined with other 

attributes to form such a composite.   

The TieredPipeline is a DiamondPipeline with an ancillary method that 

allows the addition of a tier.  This allows the user to create an arbitrary number of 

tiered Commands.  In the Machinist framework each tier can either be a single 

Command or a Pipeline.  If a Pipeline is used, the Pipeline is able to use an 

arbitrary Runner and Reconciler, independent of the parent TieredPipeline.  This is 

an interesting feature of the TieredPipeline as it allows the user to configure 

execution behavior per tier (e.g., execute the first tier consecutively, the second 

concurrently, etc.).  In this way the user may want to ensure that data is written to 

critical data stores first and then concurrently, possibly asynchronously, write to 

additional stores.  The SimpleTieredPipeline provides defaults for the Runner and 

Reconciler of the TieredPipeline.  The default Reconciler, similar to the 

SimplePipeline, is the FirstNotNullResultReconciler.  The default Runner is the 

ChainedConsecutiveRunner, which uses the output of the previous tier as input for 

the next tier. 

7.1.5 Decorators 

The Machinist implementation was developed to be expressive and 

extensible, specifically focusing on the composability of its components.  One way 

the framework supports these attributes is by providing a series of Decorators for 

each architectural component.   
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Figure 7-17.  The Decorator pattern. 

The most common component to decorate is the Command interface.  

Decorating a Command is straightforward and allows for the modification of 

behavior before and after the execution of the decorated Command.  Machinist 

offers two useful Command decorators: a SourceCommandDecorator and a 

TimeCommandDecorator. 

7.1.5.1 Source Decorator 

In applications utilizing polyglot persistence, it is helpful to understand the 

specific data store the data has been retrieved from.  This information can be 

wielded in a variety of ways such as aiding in debugging and providing the 

Reconciler with source metadata to make increasingly intelligent reconciliation 

decisions.  Providing source information also allows the application to reconstitute a 
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result or results set that has been split apart and persisted across multiple data 

stores (e.g., attribute one in data store one, attribute two in data store two, etc.). 

 
Figure 7-18.  The SourceCommandDecorator class diagram. 

The Machinist framework provides an extensible abstract class that accepts a 

Command during initialization.  Extending this class—as the 

SourceCommandDecorator does—allows the application developer to easily make 

new Decorators for any Command.  In the case of the SourceCommandDecorator, 

the source is defined during construction of the Decorator.  The Decorator then 

executes the decorated Command, and the source is set on the result of the 

Command execution before the Decorator returns. 

7.1.5.2 Time Decorator 

Gathering empirical data on the performance of each data store in use by an 

application is not always apparent when utilizing multiple data stores.  Capturing 
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this information through the Machinist framework is straightforward.  Similar to 

attaching a source to a Command result, a Decorator can be used to instrument 

Command execution with a timer.   

 
Figure 7-19.  The TimeCommandDecorator class diagram. 

The TimeCommandDecorator accepts a callback that will be passed the 

elapsed runtime, in nanoseconds, of the decorated Command as a method 

argument.  Using this information it is possible to determine the runtime of each 

Command, which is helpful for debugging, performance tuning, and generally 

gaining a better understanding of how each data store in an application is 

functioning.  An interesting use of this data is to empirically show which data stores 

perform better for similar or identical tasks.  Because the framework offers a 

callback, any number of behaviors can be implemented including logging timings or 

asynchronously persisting timings to additional data stores for future analysis.  
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CHAPTER 8: MBox: A Multi-Data Store Inbox 

To fully demonstrate the expressivity of the Diamond architecture and its 

implementation—the Machinist framework—it is helpful to look at a concrete, 

multi-data store application.  MBox is a web-based email reader designed to take 

advantage of multiple data stores.  Implemented in Java, MBox serves as a 

functioning example of the Diamond architecture, depending directly on the 

Machinist framework.  In this chapter we will provide an overview of the MBox 

application, showcasing many useful features of the architecture and framework. 

8.1 Overview 

MBox is a read-only IMAP client developed using core Java and the Spring 

Framework (i.e., Spring Boot, Spring Data, and Spring MVC [72].  The user 

interface has been developed with React [73], a JavaScript framework developed by 

Facebook, and Bootstrap [74], a CSS framework developed by Twitter.  A screenshot 

of the application is provided in Figure 8-1 below. 
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Figure 8-1.  The MBox application. 

The MBox application is modest, as can be seen in Figure 8-1, but also 

designed to exercise a variety of complex usage scenarios.  It is worth noting the 

attributes of each email displayed by the user interface.  The following attributes 

are required to be available to the user interface to render properly: 

 

• Title - the title of the email 

• From address - the email address or addresses of the sender  

• To address - the email address or addresses of recipients 

• Date received - the date-and time that the email was received 

• Content - the text or html content of the email 

• Datasource - the datasource that the email was retrieved from 
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The application also provides search functionality over all fetched emails via 

the search input in the upper right of the layout.  Searches are executed as the 

characters are typed to give the user immediate feedback.  The goal of the MBox 

application is to provide a non-trivial example of the Diamond architecture through 

the use of the Machinist framework.  We feel that the feature set contributed covers 

many commonly encountered usage scenarios for heterogeneous data-intensive 

systems. 

8.2 Design and Architecture 

The MBox architecture follows an enterprise architecture pattern consisting 

of an application, service, and persistence tier.  The persistence tier, which had 

focused on a traditional Repository pattern, has been enhanced to make use of the 

Diamond architecture, through the Machinist framework.  The MBox application 

was designed to use four independent classes of data stores: relational, key-value, 

columnar, and document.  The high-level architecture of the MBox application is 

shown in Figure 8-2. 
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Figure 8-2.  The MBox architecture utilizing four disparate data stores. 

The above architecture implements the full Diamond architecture including 

the RepositoryFacade.  To utilize multiple data stores, a series of Pipelines were 

developed for fulfilling persistence operations (e.g., save, find, find all, search, etc.).  

The application architecture follows the pattern shown in Figure 6-12, creating a 

Service and RepositoryFacade per domain object.   
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8.2.1 Data Model 

The domain objects available in the MBox application are User and Email.  

The class diagram for the data model is provided via UML in Figure 8-3. 

 
Figure 8-3.  The MBox data model. 

The common parent of the data model is the DomainObject, which is designed 

to hold attributes commonly needed for persistence, regardless of data store.  Each 

object in the data model extends this common parent and adds its own attributes.  

The User class is intended to be simplistic and only holds the email address 

associated with an IMAP account to enable the fetching of messages from a hosted 
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email server.  The Email model mimics common attributes provided by email 

message APIs, specifically MBox uses the javax.mail API. 

8.2.2 Persist 

The Machinist framework strives to leverage the existing persistence 

strategy of the application.  The persistence strategy of the MBox application is 

implemented through use of the Repository pattern.  In this pattern there will be a 

Repository per data store per domain object.  The advantages of this approach are 

numerous, but specifically of note is the composability of this strategy.  Architecting 

persistence in this way allows for the application to use one or many Repositories 

through composition as needed, either by interacting with multiple data stores, 

multiple data models, or both.  The Diamond architecture allows for the 

accomplishment of all of these actions, but, if required, the application can choose to 

communicate directly with any data store that is needed through a Repository, 

bypassing the architecture (e.g., Pipelines and Commands).  This approach results 

in a high degree of flexibility, allowing the architecture to adapt to unanticipated 

use cases if necessary.  Three typical persistence and retrieval scenarios are 

implemented in the MBox application for the Email domain object.  Each scenario 

leverages multiple data stores and independent aspects of the Machinist 

framework.  We will describe, in detail, the following scenarios: saving Emails, 

finding all Emails for a given User, and searching persisted Emails. 

For reference, the interfaces for the EmailService, EmailRepositoryFacade, 

and underlying Repositories are provided in Figure 8-4 and Figure 8-5.  Of note is 
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the heterogeneity of the underlying Repository method definitions.  Coping with 

this level of heterogeneity is one of the strengths of the Diamond Architecture.  

Converters are used by Commands to adapt the domain model to any signature 

required by the underlying Repository. 

  

 
Figure 8-4.  The EmailService and EmailRepositoryFacade definitions. 

 
Figure 8-5.  The set of Email Repositories with diverse method definitions. 

8.2.3 Save 

An MBox Email is persisted to all four available data stores of the 

application.  To accomplish this using the Machinist framework, a Pipeline 

containing a series of SaveCommands is created.  Each SaveCommand implements 
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the persist workflow as described in Chapter 7 and requires the application 

developer to implement a data model Converter and Repository callback.  A 

SaveCommand is constructed per data store.   The conceptual architecture with 

associated concrete Machinist implementations is given in Figure 8-6 below. 

 
Figure 8-6.  The save Email architecture. 

As shown above, the individual Repositories are implemented on a per data 

store basis and are responsible for encapsulating all behavior necessary for CRUD 

operations.  The Repository callback wraps direct method calls to the Repository to 

provide one level of indirection, which enables the execution of arbitrary behavior, 

not only calls to the Repository.  The relational and document Repositories utilize 
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the Spring Data Framework [75] which affords full object relational mapping 

capabilities for the data model.  The key-value Repository is implemented as an in-

memory hash, and the columnar Repository is implemented using the DataStax 

Java Driver for Apache Cassandra [76].  All Repositories implement a save method 

with varying method signatures as previously shown in Figure 8-5.  To adapt to the 

heterogeneous method signatures of these Repositories, Converters must be 

implemented.  For the Email save Pipeline, one framework provided Converter and 

three custom Converters are needed.  

The relational and document Repositories accept rich data models for 

persistence.  Spring Data affords object relational mapping capabilities for these 

Repositories.  No conversion is necessary for the relational Repository; however, the 

SaveCommand constructor requires a Converter so the NoOpConverter is used.  

This Converter passes input through without modification, which is a common use 

case for object relational mapper-based Repositories that internally understand how 

to properly deconstruct and reconstruct a data model for persistence.   

The key-value and columnar Repositories each utilize similarly developed 

Converters.  Generally, in key-value and columnar data stores, a complex and 

normalized object graph must be modified significantly to enable effective storage.  

Because these data stores do not provide traditional table structures and data 

reference capabilities, it is common to de-normalize the data model and embed 

referenced structures.  This is the approach taken by the MBox application for key-

value and columnar persistence.   
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Figure 8-7.  The EmailKeyValueConverter implementation of the MBox application. 

To effectively store an Email in the key-value and columnar data stores, the 

Converter is responsible for embedding the associated User during conversion.  The 

result of the conversion is a hash with a composite key and JSON representation of 

the embedded object graph as its value.  The composite key is a string generated 

from attributes present on the Email (e.g., ID, UID, User ID, User email address, 

etc.) joined by a colon.  The JSON representation is generated by the Google Gson 

library [77] and stored as a string. 

Although the document Repository provides object relational mapping 

capabilities through Spring Data, a Converter is still needed to effectively store the 

data model.  The Converter used for the document Repository is necessary to 

enhance the data model before persistence.  This is done through the addition of 

attributes to the data model.  For information retrieval tasks, content is often 

duplicated and analyzed (e.g., splitting, stemming, n-gram generation, etc.) 

differently to fulfill a variety of use cases.  In the MBox application, Email content 
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is typically a complex MIME object such as a HTML document.  Although a search 

index could be built from HTML, it would likely result in poor search results.  

Parsing the content of the Email and storing it separately results in a dramatic 

increase in relevant search results.  

 
Figure 8-8.  The EmailDocumentConverter implementation of the MBox 

application. 

The EmailDocumentConverter adds two additional fields to the Email data 

model to achieve effective persistence.  The first field is used to store the parsed 

Email content which is generated by the jsoup library [78]. As previously 

mentioned, the parsed content is used for search specific tasks.  The second 

additional field is the ID of the User associated with the Email.  This is necessary to 
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filter search results (i.e., Emails) by User.   The addition of this field allows the 

application to store all Emails, regardless of User, in a single index while only 

returning results belonging to the current User.  This behavior is accomplished via 

a filter query. 

To execute the four individual SaveCommands, which make use of the 

previously described Repositories and Converters, a Pipeline must be created.  As 

described in the previous chapter, there are a variety of implementations provided 

by the framework.  For the purposes of the MBox application, a TieredPipeline is 

used.  This is the optimal Pipeline for this usage scenario because we would like to 

ensure the Email is persisted to at least one data store (i.e., relational) before 

attempting to persist to additional data stores.  Because a relational database will 

also assign a unique identifier (i.e., primary key) upon a successful save, we are able 

to use this unique identifier where required in other data stores (e.g., composite 

keys, document identifiers, etc.).   

 
Figure 8-9.  The configuration of the MBox Email save Pipeline. 

By using a SimpleTieredPipeline, the Pipeline will be defaulted to make use 

of a ChainedConsecutivePipeline and a FirstNotNullResultReconciler.  The first tier 

is simply the Command used to save Emails to the relational data store.  The 
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second tier is a ConcurrentPipeline that will concurrently persist to the key-value, 

document, and columnar data stores.  Of note is the type enforcement, through Java 

generics, of the Pipeline inputs and outputs: the Pipeline is defined to accept an 

Email as input and requires that an Email be provided as output.  This ensures 

that the Pipeline enforces a similar method signature to the Facade or Service 

method that is executing it.  In the case of the MBox application, the application 

tier will initiate the call sequence by invoking the save method on the Service.  The 

Service will in turn invoke the save method on the Facade which will then delegate 

to the configured Pipeline and result in the persistence of the Email messages. 

8.2.4 Find By User 

In many applications that allow for the creation of a user account, it is 

common to fetch all entities associated with the user account; the MBox application 

is no different.  When a user authenticates to the application, Emails are fetched 

from the server and persisted in the manner described in the previous section.  

Each Email is associated with a User before persistence, which provides a data 

model capable of retrieving all Emails belonging to a given User.  The MBox 

application is concerned with providing the optimal performance when retrieving 

data, so our choice of storage strategies and Pipelines reflects this consideration.  

The high-level architecture used to find all Emails belonging to a given User is 

shown in Figure 8-10 below. 
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Figure 8-10.  The find all Emails for User architecture. 

The find architecture is similar to the save architecture with a few notable 

differences.  The architecture makes use of the framework provided 

FindAllCommand, which is responsible for implementing the read many or all 

workflow described in Chapter 7.  In the find workflow, a Function is needed to 

produce a key suitable for data store specific lookup.  The result of this operation 

could be as simple as calling a method that returns the object’s primary key (i.e., 

ID) or as involved as constructing a complex query criteria that accounts for 

advanced operations such as paging and filtering.  The key generators developed for 

use in the find all Emails belonging to a User scenario are responsible for accepting 
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a User and generating a simple data store specific lookup key.  Because the 

relational Repository accepts a User in its find method, no key generator is 

necessary.  The key-value and column key generators create composite keys from a 

variety of User attributes (i.e., ID, email address) by joining the attributes together 

with colons to create the final lookup key.  The document key generator simply 

returns the primary key (i.e., ID) of the given User, which will be used to filter the 

eventual results set by User.  The Converters remain the same as for the save case.  

This is one of the advantages of encapsulating all behavior pertaining to data model 

conversion in discrete components.  Having this behavior spread throughout a 

Repository or set of Repositories would negatively impact reuse.  In fact, many of 

the Converters developed by the application make use of existing key generators 

through composition to generate composite keys during forward conversion in 

preparation for persistence.  

The second notable difference between the save and find architectures is the 

Pipeline used.  For retrieving results in the most efficient manner available, the 

framework provides the FlashPipeline.  This Pipeline concurrently executes its 

Commands and awaits the first non-null result or results set returned.  Once the 

result has been received, all Commands still executing are cancelled.  The 

FlashPipeline is ideal for MBox because the application is not opinionated about 

where a result originates from and the application makes a conscious choice to 

duplicate all information required by the user interface in each data store.  The 

resulting query operation always retrieves results from the fastest available data 
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store, even if the fastest store changes from query to query.  This desirable behavior 

is easy to achieve using the Diamond architecture.  The code to accomplish this 

behavior is shown in Figure 8-11. 

 
Figure 8-11.  The configuration of the MBox find Emails by User Pipeline. 

8.2.5 Search 

Search has come to be an expected feature of many applications.  MBox 

implements comprehensive search across multiple data stores, again using the 

Diamond architectural style.  However, not all data stores lend themselves to being 

suitable for search tasks.  Document is a class of data stores that typically excel 

with regard to information retrieval tasks.  To enable full-text search over a user’s 

Emails, the MBox application utilizes the capabilities of the document and 

relational data stores.  In a production application, a relational data store is 

unlikely to perform as well as a document store for search tasks.  Using both classes 

of stores in this application is intended to show the flexibility of the architecture, 

and additionally demonstrate a usage scenario where the quality of results are able 

to degrade slightly to provide durability and optimal performance.  The high-level 

search architecture is shown in Figure 8-12 below. 
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Figure 8-12.  The search Emails for User architecture. 

 As the diagram indicates, the search architecture only utilizes two of the 

four available data stores.  The EmailService and EmailRepositoryFacade both 

provide search methods that take a query string as a method argument.  This query 

is passed to the Pipeline as input, enforced by Java generics as a string, and 

requires no conversion before being given to each Repository. 

 
Figure 8-13.  The configuration of the MBox search Pipeline. 
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To enable proper search functionality, the application is again utilizing a 

FlashPipeline to optimize the persistence tier for the best performance possible 

among the available data stores.  If the application would have instead optimized 

for improved precision or recall of search results, a ConcurrentPipeline, which 

blocks until all Commands have executed and returned, with a custom Reconciler 

might have been used.  To increase precision, a custom reconciliation strategy 

should be implemented to apply an order of precedence to the results set; for 

instance, the Reconciler could be implemented to prefer results from the more 

search capable document store.  Increasing recall could be accomplished by creating 

a reconciliation strategy that merges all results from both data stores.  

8.2.6 Decorators 

The framework-provided Decorators are used throughout the MBox 

application, most notably to attach a data source to a result.  The data source 

attribute is displayed in the footer of each Email presented by the user interface, as 

seen in Figure 8-1.  For debugging purposes, the TimeCommandDecorator is also 

used frequently to compare and contrast the performance of each data store on a 

task-by-task basis.  Having empirical timings of such operations is easily achieved 

using the Machinist framework.  The code required to decorate the Commands used 

by MBox is provided below. 
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Figure 8-14.  The MBox application Command Decorators. 

Use of the Decorators is straightforward and easily extended.  The callback 

required by the TimeCommandDecorator, for our purposes, simply prints the 

provided timings to standard out.  A more advanced implementation could keep 

track of timings for other scenarios such as determining what configured Command 

would be most efficient to execute based on historical runtimes, avoiding the need to 

execute all configured Commands when there is a high likelihood the same 

Command will always return first.  
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CHAPTER 9: Evaluation 

In this chapter we present the evaluation of our architecture using a variety 

of common scenarios encountered by heterogeneous data-intensive applications.  

The developed framework, Machinist, and associated application, MBox, are used to 

perform the evaluation. 

9.1 Overview 

 The ideal architecture for persistence in heterogeneous data-intensive 

systems will result in accessible and flexible polyglot persistence.  In addition, the 

implementation of an associated framework will not hinder attributes afforded by 

the underlying, large-scale data storage systems.  These systems are designed to 

offer scalability, availability, and durability with a consistent focus on performance.  

The ideal architecture must minimize the overall effort required to adopt large-scale 

data stores without conceding the desirable attributes of these technologies. 

By specifically leveraging the author’s professional background as the co-

founder and Chief Technology Officer of a large-scale data-intensive software 

startup, an independent software consultant, a software engineer at a publicly 

traded company, and an academic research assistant, we have the necessary 

experience to discuss the constraints present in highly demanding, large-scale 

software environments.  Each existing system the author has contributed to 

leverages state-of-the art tools from many computer science disciplines outside of 
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software engineering, including distributed systems, programming languages, 

machine learning, natural language processing, and human-centered computing.   

9.2 Approach 

The approach taken for the evaluation of the Diamond architecture and 

associated implementation is that of a combined analytical and quantitative nature.  

We will enumerate a variety of scenarios that commonly occur within heterogeneous 

data-intensive systems.  For each scenario, we will be able to compare and contrast 

our approach, through the use of our architecture and framework, to a more 

traditional approach that does not utilize our architecture.  We will use the 

functionality of the MBox application to constrain each evaluation scenario, putting 

each usage scenario in the context of an existing application’s architecture to cater 

to a familiar problem domain and data model. 

9.3 Assumptions 

To analytically evaluate the Diamond architecture against more traditional 

approaches to polyglot persistence, we must begin by describing our initial 

assumptions of both architectures.  Our focus will be on the architectural changes 

that must occur in the architectures to fulfill each scenario.  For the sake of this 

evaluation, we will assume that the data stores in use are already available to the 

application developer (e.g., data store deployment, schema definition, etc.).  Both 

architectures will be assumed to be operating on the same data model, that of the 

MBox application which is composed of a User and a set of Email messages. 
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The initial starting point for each approach (three-tier vs. Diamond) will be a 

full architecture implementation that makes use of a relational data store.  The 

traditional enterprise application architecture will consist of application, service, 

and persistence tiers.  The service and persistence tiers make use of Repository 

implementations that provide save and find operations.  The Diamond approach 

will consist of application, Service, RepositoryFacade, Pipeline, and Sub-Repository 

components for a relational data store.  It is also assumed that the Diamond 

approach will have existing implementations for save and find operations against 

this data store.  The initial conceptual architectures are provided in Figure 9-1. 

 
Figure 9-1.  The initial evaluation systems using a Diamond architecture (left) and 

a traditional three-tier architecture (right). 
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As can be seen above, for a single data store there is some amount of 

additional work required by the Diamond architecture.  The Diamond architecture 

requires a Pipeline for CRUD-based methods present in the service tier (e.g., save, 

find, find all, search, etc.).  Each of these Pipelines requires a Command that in 

turn requires a Function (i.e., key or query generator for finds), Converter, and 

Repository.  The addition of the Pipeline and its components, as well as the 

RepositoryFacade, is additional work in comparison to the traditional architecture.  

However, this effort is similar to the work of developing a system in anticipation of 

the system being run using multiple threads or on multiple servers.  Up front effort 

is required even if the software is initially running in a single thread or on a single 

server, but that effort results in measurable savings when the system is later 

scaled.  The implementation code for both architectures is given in Appendix A. 

9.4 Evaluation Scenarios 

The remainder of this chapter will discuss a number of evaluation scenarios, 

which contrast the advantages and disadvantages of the approaches contributed by 

the architectures.  As a result, we contribute a thorough evaluation of our work. 

9.4.1 Additional Data Store 

As an application transitions from a homogeneous to a heterogeneous 

architectural style, it will require the ability to add an additional data store to its 

existing architecture.  The need for an additional data store can arise from a variety 

of requirements including specialization, such as information retrieval tasks, 
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performance, or redundancy, among others.  Using the two initial architectures, we 

will discuss the steps required to add an additional data store to both architectures. 

In a traditional enterprise architecture, there are multiple possible points of 

extension for the addition of a data store, the first being the existing Repository.  

The existing Repository already isolates the details of persistence for a single data 

store from the service tier, making the Repository a natural point of extension.  The 

second reasonable point of extension is the existing service tier.  Selecting the 

service tier as the point of extension is also reasonable as it allows the Repository to 

continue to focus on encapsulating the persistence details of a single store.  Because 

the MBox application is using Spring Data for its relational Repository, extending 

existing Services (i.e., EmailService) requires the least amount of effort.  A Spring 

Data Repository abstracts and obfuscates many of the implementation details 

associated with relational persistence, making it difficult to adapt for polyglot 

persistence.  It is far easier to create additional Repositories than enhance the 

existing Spring Data Repository.  Applying this reasonable strategy, the following 

steps are required to add an additional data store to our traditional architecture. 

 

1. Create an additional Repository for the new data store 

2. Inject the new Repository into existing Services 

 

A new Repository must be created to encapsulate the persistence details of 

the store and then added to the existing service tier for later use. 
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Figure 9-2.  Three-tier architecture with two data stores. 

The steps required to prepare the Diamond architecture for an additional 

data store are very similar to the steps required to prepare a traditional, three-tier, 

architecture.  It is helpful to point out that we will compare the details of actual 

persistence scenarios (i.e., making use of the additional Repository) later in this 

chapter.  For now, we wish to focus on the amount of work required to prepare the 

architectures for an additional data source without explicitly invoking the 

additional data source (e.g., save, find, find all, etc.).  The steps for additional data 

store inclusion required by the Diamond architecture are listed below. 

 

1. Create an additional Repository for the new data store 

2. Ensure the new Repository is available for use by existing Pipelines  
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As with the traditional approach, only two high-level steps are required by 

the Diamond architecture, and they are similar in effort.  Allowing the Repositories 

to be discovered by the service tier or existing Pipelines can be done by directly 

instantiating the Repositories.  However, in an enterprise software organization, 

this is likely to occur through an inversion of control framework, such as the Spring 

Framework, which provides access to the Repositories through an application 

context (i.e., a global context of instantiated classes).  Regardless, the Diamond 

architecture requires less modification than the traditional architecture since the 

service tier is already configured to invoke Pipeline Commands via the 

RepositoryFacade (requiring no Service refactoring). The new data source will 

automatically be invoked correctly as soon as the Pipelines are updated to include 

the new Commands that read and write to the new data store through the new 

Repository.  The prepared two data store Diamond architecture is shown in Figure 

9-3 below for reference. 
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Figure 9-3.  Diamond architecture with two data stores. 

9.4.2 Persist Data to Additional Store 

When adding an additional data store, the first step is to enable the 

persistence of data to the new store.  In a traditional three-tier architecture, as 

described in the previous scenario and shown in Figure 9-2, an existing Service will 

be required to take on additional responsibilities.  The following steps are required 

by the traditional architecture to enable persistence to a newly available data store. 

 

 



 114 

1. Create save method on new data store Repository 

2. Add data model conversion code to the existing Service save method 

3. Invoke each Repository  

4. Collect results of each Repository invocation 

5. Implement the reverse data model conversion per Repository result 

6. Add additional logic to Service to reconcile multiple Repository results 

 

The steps listed above would be added to the save method of the 

EmailService in the traditional architecture.  Doing so requires the refactoring of 

the save method to adapt to multiple data stores, converting, invoking, and 

reconciling with different behavior for each store within a single method.  The 

implementation of the three-tier architecture EmailService save method is below. 
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Figure 9-4.  Traditional architecture EmailService save method for two data stores. 

Figure 9-4 explicitly shows the steps required to achieve polyglot persistence 

in a traditional architecture across a relational and document data store.  Each line 

style represents a different behavior required to enable polyglot persistence.  The 

solid outline sections show interactions with the underlying traditional, per data 

store, Repositories.  The cross-hash (i.e., x) annotation highlights code associated 

with data model conversion, both forwards and backwards.  Finally, the dashed 

annotation shows the code necessary to provide reconciliation of the multiple results 

returned by each Repository.  Of note is that adapting each of the highlighted 

sections of code to accommodate an increasing number of data stores is non-linear.  
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Additional data stores will require additional code across all highlighted sections.  

This additional code may need to be intermingled throughout the existing method to 

provide the necessary functionality, as is shown by persisting to the relational data 

store first to assign a primary key for use later in the method (i.e., solid outline 

sections).  Additionally, conversion and reconciliation code (i.e., cross-hash and 

dashed sections respectively) is arbitrarily complex and will result in effort-

intensive refactorings as the number of data stores increase. 

The Diamond architecture provides constructs for many of these behaviors.  

The steps required by the Diamond architecture are listed below. 

 

1. Create additional save method on data store Repository 

2. Implement a new data model Converter for the data store 

3. Add a new SaveCommand to the existing save Pipeline 

 

The Machinist framework allows the user to utilize full implementations of 

common constructs encountered during the development of heterogeneous 

persistence tiers.  Leveraging these components during data persistence results in 

clear isolation of concerns.  The code for adding an additional data store to the save 

Pipeline using the Machinist framework is given below. 
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Figure 9-5.  Diamond architecture Email save Pipeline for two data stores. 

Similar to Figure 9-4, Figure 9-5 explicitly shows the code required to achieve 

polyglot persistence through utilization of the Machinist framework.  In contrast to 

the traditional approach, the Diamond architecture scales linearly through the use 

of its architectural components.  Adding an additional data store to an application is 

accomplished by adding an additional Command to an existing Pipeline (i.e., 

enforcing a linear relationship between Commands and data stores).  All 

conversion, Repository, and reconciliation behavior (i.e., cross-hash, solid, and 

dashed highlights respectively) is encapsulated throughout the architecture, 

enforcing the single responsibility principle and minimizing non-linear growth as 

additional persistence technologies are adopted.  This characteristic gives the 

Diamond architecture a significant advantage when adapting an application to a 

large number of data stores. 

9.4.3 Retrieve Data from Additional Store 

After the successful persistence of data to a newly available store, the need 

for data retrieval becomes apparent.  In a traditional architecture, the service tier 

requires modification to take full advantage of the new store.  Below, we list the 
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steps required to enable an existing service tier to retrieve data from an additional 

data store. 

 

1. Add additional find method to data store Repository 

2. Add code to generate key from data model 

3. Invoke each Repository 

4. Collect results of each Repository invocation 

5. Implement data model conversion per Repository result 

6. Add additional logic to reconcile multiple Repository results 

 

Again, the existing find Service method must be refactored to accommodate 

an additional data store.  The refactored method is given below.  Although in our 

implementation we are leveraging Spring Data to enable data model conversions 

automatically, this is not the case with other data stores and would result in a more 

complex refactoring. 

 
Figure 9-6.  Traditional architecture Service find method for two data stores. 
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At this point, there is code duplication between the save and find data model 

conversion, and there is likely to be duplication between the invocation, collection, 

and reconciliation strategies of each method.  The Diamond architecture requires 

the following steps for the identical scenario. 

 

1. Create additional find method on data store Repository 

2. Implement a data model key generator Function for the data store 

3. Add a new FindCommand using the key generator and existing Converter 

to the existing find Email Pipeline 

 

The Diamond approach again leads to clear isolation of concerns and allows 

the user to leverage the existing data model Converter from the persistence 

scenario.  The code to add an additional data store to the find Pipeline is given 

below. 

 
Figure 9-7.  Diamond architecture find Pipeline for two data stores. 

9.4.4 Split Data Model Across Data Stores 

Given a complex data model, it can be beneficial to store different aspects of 

the data model in a disparate number of data stores.  One common example of this 

scenario is when a data model holds on to a large amount of content (e.g., HTML 
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content body, encoded media data such as a large photo or video).  Storing the 

metadata for the data model in a different store than the content can lead to 

performance advantages.  Splitting the data model in the traditional architecture 

again requires the modification of the existing Service methods to accommodate the 

following steps. 

 

1. Service save method must be modified to select only needed attributes off 

of data model before invoking each Repository 

2. Service find method must be modified to query each store for a given 

attribute 

3. Service save method must be modified to reconstruct data model from 

results 

4. Service find method must be modified to reconstruct data model from 

results 

 

In the traditional architecture, any method that interacts with the data store 

through the use of the data model (likely most methods, excluding calls like count 

queries) will require modification if the data model must be split after the initial 

persistence tier architecture is implemented.  The Diamond architecture requires 

the steps listed below. 
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1. Modify existing Converters to not pass through all attributes to 

conversion result 

2. Add reconstitution logic to existing Reconciler 

 

The advantage to the Diamond architectural approach is, by modifying the 

existing Converters to only pass through certain attributes on forward conversion 

(e.g., through predicates or other means), the split is accomplished for all usages of 

the Converters.  The same is true of the reconstitution behavior in the Reconciler.  

A user of the framework is able to leverage the isolation of concerns provided by 

these architectural components.  Although here we are evaluating a Service with 

only a few methods, updating a larger traditional-architecture-based system to 

support this type of change would quickly become overwhelming and error prone. 

9.4.5 Per Data Store Data Model Attributes 

Data stores vary widely in their methods of data storage.  To effectively 

utilize a purpose-built data store, the data model is often required to adapt to the 

needs of the data store which, in some cases, requires the addition of data model 

attributes on a per data store basis.  The MBox application, described in Chapter 8, 

was required to add additional attributes to its data model for the document store to 

provide full text search across a user’s Emails.  A traditional architecture would 

require the refactoring of the Service’s save method to the workflow shown below. 
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1. Existing Service save method must be modified to add additional 

attributes to data model before Repository invocation 

2. Existing save method must be modified to recognize attribute or disregard 

attribute when backwards converting repository result 

3. Existing find method must be modified to recognize attribute or disregard 

attribute when backwards converting Repository result 

 

The work required per data store to modify the traditional architecture to 

support additional data model attributes is similar to the split data model scenario.  

Any location in the Service that provides the data model to a Repository will need to 

add additional attributes before doing so.  This implies modifying the Service 

anywhere that attributes could be used including all save and find methods.  The 

Diamond architecture requires similar modifications but provides existing 

constructs to do so, thus isolating the Service from any changes. 

 

1. Modify existing Converter to add additional attributes 

 

Again, utilizing the Converter construct allows the developer to make a 

change in a single place without the need to refactor an existing Service method.  

This type of isolation allows for changes to be made throughout the persistence tier 

without affecting the rest of the application. 
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9.4.6 Concurrent Persistence 

An efficient application will not want to wait to serially execute each 

persistence operation on every Repository.  Significant performance improvements 

in polyglot persistence can be achieved by concurrently persisting across multiple 

data stores.  Modifying the traditional architecture requires the enhancement of 

many aspects of the existing save method.  The existing conversion and 

reconciliation code could be used unmodified, but the code responsible for invoking 

each Repository must be refactored. 

 

1. Create a thread pool 

2. Wrap the relational Repository call in a thread 

3. Wrap the additional data store Repository call in a thread 

4. Execute each threaded Repository call concurrently 

5. Block until all Repository threads have returned results 

 

Again, in the simple case, a single instance of this refactoring is not an 

abundant amount of work, but within a larger architecture, it could quickly become 

daunting.  The Machinist approach is much simpler. 

 

1. Switch the existing save Pipeline with the ConcurrentPipeline 

 



 124 

As requirements change, the method in which Commands are executed can 

be easily changed using the Diamond architecture, allowing the developer to 

experiment with different styles of Command invocation to determine which style 

best suits their application’s needs. 

9.4.7 Tiered Persistence 

Consecutive or concurrent persistence is adequate for many environments, 

but for some applications it is necessary to persist in tiers.  The canonical use case 

for this type of behavior in a polyglot persistence environment is the need to ensure 

that an action has occurred before executing additional actions.  In the context of 

persistence, an application may want to ensure that a data model is successfully 

written to a relational store before being persisted to additional stores.  This 

provides a simplistic form of data integrity by forcing the data to be placed 

successfully in one data store before being written, possibly asynchronously and 

concurrently, to additional stores.  In the traditional architecture, the Repository 

invocation behavior of the Service’s save method must be modified to achieve this. 
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1. Group Repository calls and associated conversion code in arbitrary order 

2. Write method of execution per group of Repository call groups (concurrent, 

consecutive, etc.) 

3. At the successful execution of each group 

a. Convert results 

b. Reconcile to one result 

4. If not the last group, pass result to next group and execute 

 

The code required to accomplish this in a traditional architecture is largely 

dependent on how many data stores the architecture is utilizing.  As we are focused 

here on the work required to change the invocation methods of the Repositories, 

using many data stores will result in large amounts of code that suffers from the 

drawbacks described in the previous persistence scenarios such as lack of code reuse 

and major refactorings.  Using the Pipeline construct from the Diamond 

architecture requires minimal steps. 

 

1. Switch existing Pipeline implementation for TieredPipeline 

2. Add each Command or set of Commands to a tier as needed 

 

The Machinist framework provides a TieredPipeline implementation that can 

be swapped for any existing Pipeline.  Creating the TieredPipeline requires the 

developer to perform the additional work of grouping commands into sub-Pipelines 
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and adding them as tiers to the parent Pipeline. However, the extra effort expended 

on creating sub-Pipelines provides the application developer with a flexible 

approach to tiered persistence which has many uses including defining 

transactional boundaries and ensuring data integrity while simultaneously being 

conscious of performance.  

9.4.8 Retrieve Fastest Available 

Retrieving a result from all available data stores is important when the data 

model has been split across the data stores.  However, in situations where the data 

has been duplicated instead of split, it is not necessary to wait for each store to 

return the same result.  When the data model has been duplicated across many 

available data stores, the application would like to take the fastest result without 

concern for where it was retrieved.  Accomplishing this in a traditional architecture 

would require the refactoring of the invocation of the available Repositories. 

 

1. Create thread pool 

2. Wrap each Repository call in a thread 

3. Execute each threaded Repository call concurrently 

4. Take the result of the first thread to return 

5. Cancel all outstanding thread executions 

 

The Machinist framework provides a Pipeline for this exact purpose; thus, 

there is again only one change required for the Diamond architecture. 



 127 

 

1. Switch existing Pipeline for FlashPipeline implementation 

 

The FlashPipeline implementation handles the details of non-blocking 

concurrent execution for the application developer.  Changing an existing 

consecutive or concurrent Pipeline usage to a FlashPipeline involves changing a 

single line of code.  Doing so ensures that, even if the data store that performs the 

fastest from request to request varies, application code remains unchanged. 

9.4.9 Enable or Disable Data Store 

As a business experiences growth, the software products they produce adapt 

incrementally.  It is often helpful for application developers to test multiple 

deployments of similar data stores or the same data store with varying 

configurations, resulting in the need to quickly disable or re-enable the code paths 

responsible for utilizing a data store.  In both architectures, the application 

developer has two relatively basic options; they can simply comment out the code 

path, or they can surround all code paths that are using the data store with a 

conditional check of a property that indicates if the data store should be used at the 

present time. 

In the traditional architecture, commenting or removing all code used to 

interact with a data store (i.e., converting, Repository invocation, result 

reconciliation) would be error prone and time consuming.  The better approach 

would be to wrap each of the functions with a conditional statement to facilitate the 
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enablement or disablement of a store through a property.  This style of 

programming is not ideal and results in errors and a tremendous amount of work 

for the developer. 

The Diamond architecture lends itself to such a usage scenario.  Because 

Commands contain the requisite knowledge for interfacing with a specific data 

store, the developer can simply remove them from inclusion by the Pipeline by 

commenting out or removing the Commands.  Additionally, because the Pipeline 

controls which Commands are given to the Runner for execution, a Pipeline can be 

decorated or extended to only pass Commands associated with enabled data stores 

to the Runner. 

9.4.10   Results Reconciliation 

In any application where multiple data stores are being utilized, the 

application is being constantly presented with results from each data store.  

Determining which results to return to the rest of the application can be a complex 

task.  As additional data stores are added, the result reconciliation logic must be 

adapted in all locations where results are reconciled.  Changing the reconciliation 

logic in a traditional architecture requires: 

 

1. The modification of each method that handles results from multiple data 

stores: at a minimum, the find and save methods in our example 
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The Diamond architecture provides the Reconciler construct to encapsulate 

this behavior.  Common behaviors, such as taking the first non-null result from a 

set of similar results, can be easily implemented by using the provided 

FirstNotNullResultReconciler.  For this example scenario, the Diamond 

architecture requires a single change. 

 

1. Add additional behavior to the existing Reconciler 

 

This modification would change the reconciliation behavior of every Pipeline 

making use of the Reconciler. 

9.5 Quantitative Features of the Evaluation 

To evaluate the overall effort required by architectures for data store 

adoption it is helpful to provide a quantitative comparison between the two.  To 

enable this comparison we again make use of the MBox application.  The final 

application provides a full implementation of the EmailService interface for each 

architectural approach.  The three-tier architecture provides an EmailService 

implementation that contains all the behavior required to save Emails, find Emails 

by a given User, and search Emails.  The Diamond architecture implementation 

configures the necessary Pipelines for the same functionality outside of the 

EmailService and ensures the Pipelines are available to the RepositoryFacade, 

which in turn is invoked by the Diamond EmailService.  Both implementations 
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utilize four disparate classes of data stores: relational, document, key-value, and 

columnar.  The line of code counts for each approach is provided in Table 9-1. 

Traditional Diamond 

Component Lines of Code Component Lines of Code 

save(email:Email) 37 SavePipeline 34 

save(emails:Collection) 71 SaveAllPipeline 16 

findByUser(user:User) 40 FindByUserPipeline 16 

search(query:String) 9 SearchPipeline 9 

 Table 9-1.  Line of code counts for traditional (left) vs. Diamond (right) 
EmailService implementations utilizing four data stores. 

The line of code counts for the traditional approach was derived from the 

ThreeTierEmailService implementation.  The derived counts of the Diamond 

architecture were taken from the custom classes required to configure the necessary 

Pipelines and provide conversion of the MBox data model (i.e., 

EmailDocumentConverter, EmailKeyValueConverter, EmailColumnarConverter, 

EmailKeyValueKeyGenerator, EmailDocumentKeyGenerator).  The total line of 

code counts for each approach is provided in Table 9-2 below. 
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Traditional Diamond 

157 LOC 75 LOC 

52% line of code reduction 

Table 9-2.  Total line of code disparity between the traditional and Diamond 
architectural approaches. 

As is shown by the line of code comparison the Diamond architectural 

approach to polyglot persistence results in significant code savings for the 

persistence tier developer.  When considered in combination with the analytical 

evaluation conducted previously in this chapter the Diamond architecture provides 

an architecture that minimalizes the complexities and overall effort associated with 

adoption of numerous specialized data storage technologies.         

9.6 Evidence of Usefulness for Data Store Experimentation 

When adopting new data stores a developer will often experiment with a 

variety of specialized technologies.  Using the Diamond architecture the application 

developer can not only more easily add numerous data stores to their existing 

application but can also easily experiment with the available data stores once they 

have been integrated.   Experimentation leads to a better understanding of how 

data stores compare to one another in terms of performance, durability, and 

flexibility as well as an overall understanding of how the greater application 

benefits from the utilization of multiple data stores.  The MBox application greatly 

benefitted from this type of exploration, primarily through the utilization of the 
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TimeCommandDecorator, which provided empirical timings of data store 

operations.  An example log output of a typical user workflow is given in Figure 9-8. 

 
Figure 9-8.  Log output of MBox application. 

The log output shows the empirical timings, in milliseconds, of the four 

disparate data stores utilized by the MBox application (i.e., relational, document, 
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key-value, and columnar).  The log output shows the user login, Email fetch from 

IMAP, Email persistence across all four data stores, and Email search.  Beginning 

at 2015-04-10 10:27:58.477 the MBox application temporarily shutdown the 

document store to demonstrate the durability of the Diamond approach.  During 

this time period the user continued to issue searches against the system that were 

fulfilled solely by the relational store.  At 2015-04-10 10:32:49.550 the document 

store is restored to full functionality and begins to again service requests.  Once the 

cache of the document store is again primed (2015-04-10 10:32:51.839) it can be 

seen that it returns all Emails for a User over 10 milliseconds quicker then the 

other three data stores.  While these performance results are indeed interesting 

they additionally serve to highlight how valuable data store experimentation can be 

to understanding what scenarios and conditions result in the effective utilization of 

a data store within the persistence tier and what system attributes propagate 

throughout the greater application. 

9.7 Results 

The results of our evaluation show the many advantages the Diamond 

architecture has over the traditional approach.  Although, the Diamond architecture 

does require some amount of upfront work to implement, it is similar in scope to 

developing for multi-threaded or multi-server environments.  The results show that, 

through many common polyglot persistence scenarios, the implementation of the 

traditional three-tier architecture requires up to 50% more work than the 

implementation of the Diamond architecture utilizing the Machinist framework.  
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Additionally, the Diamond architecture limits greater than linear growth in 

persistence code by providing a one to one mapping between Commands and data 

stores.  This strategy allows the developer to better prepare the persistence tier of 

their application for increasing numbers of data stores.  The major lessons learned 

from our evaluation are:  

 

1. Isolating all persistence responsibilities within the Service tier is a poor 

approach that 

a. Results in too much responsibility for a component that is intended 

to focus solely on business logic. 

b. Ruins testability of the Service.  

2. Isolating the persistence workflows within Commands allows for reuse by 

limiting behavior duplication in Services. 

3. Conversion code (e.g., data model conversion, selective attributes, 

additional attributes) is difficult to keep isolated in a Service method.  

Using a Converter encapsulates these responsibilities and ensures single 

points of code change. 

4. Methods of Repository invocation are diverse and subject to change.  

Changing the Pipeline implementation is far easier than refactoring a 

Service method. 
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5. Diamond architecture Service and Facade methods are simplistic, often 

only invoking the run method of a Pipeline.  This facilitates testability 

and maintains the focus of the Service on business logic 

6. Creating new Functions (i.e., key generators and callbacks), Converters, 

Runners, Reconcilers, and Pipelines is easily accomplished through 

composition and Decorators.  The same is not possible through Service 

extensions. 

 

The level of effort required to provide persistence without the Diamond 

architecture and Machinist framework for two data stores has been demonstrated to 

be substantial.  Adding additional stores using the traditional architecture would 

also be substantial and would quickly become unmanageable.  Maintaining a 

Service that must coordinate for N data stores is incredibly complex; however, the 

Diamond architecture was designed specifically to fulfill this task.  The level of 

effort to add an additional store is the same as described in our evaluation scenarios 

using the Machinist framework.  Through this design, we have provided an 

architecture capable of adapting to varying numbers and types of data stores in a 

given system over time.  Furthermore, the types of small, isolated changes required 

by the Machinist framework to work with a new data store significantly reduces the 

costs typically associated with task.  This reduction, in turn, significantly increases 

the accessibility of working with multiple data stores.  Since the cost to entry has 

been significantly reduced, developers can feel more confident that “the leap” to 
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experiment with or adopt a new data store is one that is manageable and safe as 

opposed to error-prone and dangerous.  Finally, the architecture developed provides 

the scalability, availability, and durability required to meet the expectations of 

current users of large-scale, heterogeneous data-intensive systems. 
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CHAPTER 10: Future Work 

The movement away from one-size-fits-all systems and towards systems 

composed of specialized data storage technologies will grow and result in future 

research concerning architectural patterns for large-scale heterogeneous systems.  

A future direction for work in this research area is data model decomposition and 

reconstitution.  Currently, the application developer is responsible for designing 

how to decompose the data model for effective storage by each data store.  The 

application developer is also responsible for implementing the details of data model 

reconstitution after retrieval from multiple stores.  These complexities could be 

isolated from non-expert users or generated automatically based on best practices or 

other information inferred from the code base.  As an example, a successful 

implementation would allow the application developer to declaratively specify what 

data store to persist the data model to without needing to also determine how best 

to store it.  Such a system would drastically increase accessibility of these 

technologies by limiting the accidental complexities associated with data model 

conversion.  Research is needed to understand how to ensure that data model 

Converters understand data model versioning and the underlying data store 

migrations that support them.  An automated data model Converter generator could 

greatly aid these tasks. 

An additional research direction would focus on the creation of a federated or 

imperial query API for data stores.  It is overwhelming to learn the details of all of 
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the available data store query technologies because they vary drastically from high-

level languages (e.g., SQL, CQL, Cypher, Gremlin) to extensive programming 

paradigms (e.g., MapReduce).  A query framework that could provide an extensible 

abstraction for underlying query technologies would revolutionize accessibility for 

data store technologies.  This research could further be extended to enable the 

automatic detection and execution of a query on the best system for the task.  

Enabling this type of query intelligence would minimize the expertise required to 

implement the individual Repositories leveraged by the Diamond architecture. 

Utilizing multiple data stores results in a variety of data integrity issues for 

the application developer.  Although these issues exist in most modern software 

companies today, increasing the number of places that data is stored is likely to 

intensify these complexities.  Providing future direction on how to deal with these 

issues in highly heterogeneous environments would have a major impact on this 

style of application architecture.  Ideally, the architectural constructs provided by 

this dissertation could serve as the foundation for this work.  A series of Pipelines 

and Commands could be developed to help the persistence architect understand 

where data was placed and, in the most ideal scenario, where data should be placed.  

This type of tool support will provide incredible value to organizations adopting 

heterogeneous architectures.  The Commands and Pipelines provided through the 

Machinist framework are useful but basic in comparison to their full potential. 

A final research area is the challenge of data integration at scale.  

Integrating data from disparate sources is difficult and at the core of the promises 
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made by “Big Data”.  Stonebraker suggests the following techniques for data 

integration at scale: human involvement, transformations, entity consolidation, 

cleaning, and wrappers [69].  This is likely another area where one-size does not fit 

all, and data integration technologies will need to utilize many techniques to 

achieve success.  The Data Tamer System [79] which works to automate the data 

integration process, is one such example.  Future work in architectural patterns will 

need to provide for data integration systems that process large amounts of disparate 

data sources and produce canonical forms of data for storage.  Leveraging the work 

of the Data Tamer System, intelligent and even run-time configured Converters, 

Commands, and Pipelines could be built to help adapt integration strategies to 

multi-data store environments.  Integrating these technologies with heterogeneous 

architectures is important because the canonical representation of an object is likely 

to be formed through an iterative process as new knowledge is discovered over time.  

Aspects of the architecture that interact directly with the data model may need to 

be notified of changes made by the data integration system. For example, an 

intelligent data model decomposition strategy may need to incorporate knowledge of 

a new attribute or type added by the data integration system.  Research in this area 

could result in systems capable of storing and integrating vast and disparate data 

sources without the need for time-consuming development tasks. 
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CHAPTER 11: Conclusions 

The contribution of this dissertation is the implementation of an architecture 

for the enablement of polyglot persistence.  The Diamond architecture provides a 

series of constructs that allow a traditional enterprise architecture (i.e., three-tier 

architecture) to adopt an unknown or varying number of data stores.  In this way, 

we contribute to the field of software engineering the design, implementation, and 

evaluation of an architecture useful for polyglot persistence.  The resulting software 

enables application developers to adopt and/or abandon large-scale data stores 

without overwhelming complexity.  Minimizing complexities in polyglot persistence 

makes this style of architecture accessible to more software engineers which, in 

turn, will aid the transition to a multitude of systems with a heterogeneous style of 

architecture that are not built solely upon one-size-fits-all technologies.  The 

experience gained through the design and implementation of this polyglot 

persistence framework will enable future recommendations on how to best develop 

tools and techniques for this new architectural era. 
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APPENDIX A – Mbox Persistence Implementations 

 
Three-tier architecture, single data store, EmailService implementation for 

MBox application. 
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Diamond architecture RepositoryFacade implementation used by MBox.  
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The Pipeline implementation for a dual data-store MBox application.  
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APPENDIX B - Machinist Class Diagram 


