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Interferometers enable ultrasensitive measurement in a wide array of applications from gravitational
wave searches to force microscopes. The role of quantum mechanics in the metrological limits of
interferometers has a rich history, and a large number of techniques to surpass conventional limits have
been proposed. In a typical measurement configuration, the trade-off between the probe’s shot noise
(imprecision) and its quantum backaction results in what is known as the standard quantum limit (SQL). In
this work, we investigate how quantum correlations accessed by modifying the readout of the
interferometer can access physics beyond the SQL and improve displacement sensitivity. Specifically,
we use an optical cavity to probe the motion of a silicon nitride membrane off mechanical resonance, as one
would do in a broadband displacement or force measurement, and observe sensitivity better than the SQL
dictates for our quantum efficiency. Our measurement illustrates the core idea behind a technique known as
variational readout, in which the optical readout quadrature is changed as a function of frequency to
improve broadband displacement detection. And, more generally, our result is a salient example of how
correlations can aid sensing in the presence of backaction.
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When one seeks knowledge of the full dynamics of the
displacement of a harmonic oscillator, noncommutation of
the two mechanical quadratures requires a minimum added
noise equal to the mechanical resonator’s zero point motion
[1,2]. This fundamental quantum limit (QL) is a distinct
bound from the standard quantum limit (SQL) that is often
considered in interferometric displacement measurement
[3–5]. The SQL is a consequence of the noncommutation of
the probe’s quadratures in a specific measurement con-
figuration and is characterized by a trade-off between shot
noise (SN) imprecision and quantum backaction that are
uncorrelated [6,7]. The QL and SQL reach the same limit
when probing at the peak mechanical response, but the QL
can be a significantly lower bound off resonance [Figs. 1(a)
and 1(b)]. In studies of micromechanical motion, there has
been great interest in observing quantum backaction and
approaching the SQL on mechanical resonance [8–12].
However, much of what historically motivates SQL
research is displacement monitoring over a wide frequency

band, such as gravitational wave searches [13]. One long-
standing concept for surpassing the SQL is to introduce
correlations by changing the readout quadrature as a
function of frequency in a technique known as variational
readout [14,15]. In the work presented in this article, we
measure the displacement of a membrane resonator in an
optical interferometer with a tunable readout quadrature.
By thermalizing the mechanical device to a dilution
refrigerator and mitigating other technical noise sources,
we are able to measure quantum noise far off resonance
compared to typical micromechanical measurements and
achieve near-SQL-limited measurement of a solid-state
object. With this starting point we are able to use
variational-readout techniques to improve upon the off-
resonance SQL for our quantum efficiency.
Over the years a variety of techniques have been

considered for surpassing the SQL [6], and it is useful
to place these in context in comparison to variational
readout. Perhaps the most well-known technique is to
restrict knowledge to a dynamically decoupled single
mechanical quadrature in a quantum nondemolition
(QND) measurement to evade backaction completely
[16]. Therefore, the total broadband noise can be arbitrarily
decreased (up to the zero-point motion) by increasing the
probe power. However, QND unfortunately measures only
a single phase force, unless the system dimensionality is
increased to perform QND measurements on both quad-
ratures [17–20]. While QND measurements have been
demonstrated electromechanically [21–24], instabilities
can arise, and a measurement below the SQL has not been
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demonstrated. In our measurements, we focus on a solution
in which a two-mechanical quadrature measurement is
made, yet quantum correlations between imprecision and
backaction are used to address the SQL. Such correlations
can be achieved by injecting quadrature squeezed light [15]
or using nonlinear cavities [25,26], but an equally capable
technique is to rotate the readout quadrature such that the
mechanical motion itself mixes the probe’s amplitude and
phase quadratures [15,27].
For any given frequency, there exists a measurement

configuration that can reach the QL for an ideal detector
[black line in Fig. 1(a)]. Here, we present an analysis based
on the probe’s uncertainty relations that reveals this con-
figuration [3,4,28]. (Note that the on-resonance SQL can be
conveniently arrived at with a Heisenberg microscope argu-
ment that dictates a minimum contribution of the shot noise
(SN) and backaction [29], but this argument does not hold in

the presence of correlation.)We consider the result of a linear
measurement of a mechanical harmonic oscillator via an
optical probe at a given quadrature angle ϕ. The analysis is
based on an optomechanical interaction in which the probe’s
phase quadrature linearly depends on the mechanical state,
while the amplitude is unchanged. In the analysis of this
interaction, we assume a large-photon limit in which the
fluctuations are linearized around a large optical field. From
the optical probe one can infer a mechanical displacement,
and we present our data and theoretical comparison in terms
of a dimensionless mechanical displacement. This trans-
formation for an optomechanical interaction in the presence
of finite efficiency and conversion to dimensionless units is
nontrivial, and the expressions put forth here are derived
sequentially in the Appendix to enable concise analysis of
their consequences on measurements.

(a) (b)

(d)(c)

FIG. 1. Imprecision for different interferometric measurement configurations. (a) Frequency dependence for fixed power p ¼ 50 and
(b) power dependence for frequency 2ðω − ωmÞ=Γ ¼ 5. Shaded areas represent the SN (gray), backaction (green), and zero-point
motion (yellow). Lines represent measurement at ϕ ¼ 90° (dashed blue), ϕ ¼ 25° (dashed red), variational readout (solid red). The black
(QL) and blue (SQL) lines in both (a) and (b) show total limits when the probe power is allowed to vary to optimize total noise, with
hatched area highlighting the QL and SQL distinction. All curves are evaluated for ideal quantum efficiency ϵ ¼ 1 and zero thermal
disturbance. (c) Experimental schematic. Coherent probe beam enters the cavity and interacts with a membrane resonator. The probe
light that leaves the cavity is detected via balanced homodyne detection with the measurement angle (quadrature) set by the local
oscillator phase ϕ. (d) Comparison to ponderomotive squeezing for frequency 2ðω − ωmÞ=Γ ¼ 5 and p ¼ 6. Plotted is the spectral
density for the optical output Sϕ (orange line) compared to the shot-noise limit (shaded gray) (see Appendix). The dashed black line
demonstrates that the optimal mechanical displacement measuring angle (ϕopt) is shifted towards the phase quadrature compared to the
phase for maximal ponderomotive squeezing.
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The dimensionless mechanical displacement inferred
from the optical probe can be written as X̂ϕðωÞ ¼ x̂mðωÞþ
Îϕ − i~χmðωÞF̂ba. Here, the mechanical state (x̂m) appears

along with SN (Îϕ) and backaction (F̂ba), where the SN and
backaction both arise from the probe’s fluctuations. The SN
is a white noise with a contribution that depends on ϕ.
The backaction term is a result of probe amplitude fluctua-
tions driving the mechanical state and, hence, is a function
only of the amplitude quadrature (AM) (ϕ ¼ 0°). The
backaction is filtered by ~χmðωÞ, the dimensionless mechani-
cal susceptibility given by ~χmðωÞ ¼ ½1 − 2iðω − ωmÞ=Γ�−1,
where Γ is the effective mechanical linewidth. Within x̂m we
include both the zero-point motion and environmental
perturbation (thermal and other applied forces).
In the experiment, we measure the symmetrized dis-

placement power spectral density (PSD) SxxðωÞ ¼
hX̂ϕð−ωÞX̂ϕðωÞi [4], which has contributions from the
mechanical resonator (Sm), SN imprecision (SII), back-
action (SFF), and their cross-correlation (SIF)

Sxxðω; p;ϕÞ ¼ SmðωÞ þ SIIðp;ϕÞ þ j~χmðωÞj2SFFðpÞ
þ 2Im½~χmðωÞSIFðϕÞ�: ð1Þ

Throughout, we use dimensionless displacement units such
that the zero-point motion contribution to the PSD Sxx is 1
on mechanical resonance (ω ¼ ωm), and the probe power
(p) is normalized to the SQL power on mechanical
resonance. Similarly, the value of the added noise at the
SQL (SN and on-resonance backaction) is equal to 1. In
absolute units the added noise at the SQL and the zero-
point motion each contribute SSQLðωmÞ ¼ 2x2zp=Γ. The

zero-point motion is given by xzp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωmÞ

p
, where

ωm is the resonant frequency of the mechanical mode of
interest, ℏ is the reduced Planck constant, and m is the
effective mass of the resonator [9].
From an analysis of the full expression of Sxx shown in

the Appendix, one finds that the probe’s uncertainty
relation [28] is connected to the measured PSD via
SIISFF ≥ 1

4
þ S2IF. The SQL corresponds to the special

case in which SIF ¼ 0, and we find the QL by careful
choice of SIF and measurement power for a given fre-
quency [4,30]. To understand measurement limits, we plot
the contributions to Sxx in Fig. 1. First, we describe the lines
relevant to SQL physics. The dashed blue line in Fig. 1
shows a phase quadrature (PM) (ϕ ¼ 90°) measurement for
a fixed backaction-dominated probe power, whereas the
blue solid line (SQL) results when optimizing the probe
power at each frequency. Due to the backaction frequency
dependence, the SQL value changes off resonance as
SSQLðωÞ ¼ SSQLðωmÞj~χmðωÞj; namely, the SQL value
drops and the power required to reach it increases.
Figure 1(b) shows that the SQL results in a linear trade-
off between SN and backaction [7].

However, if the homodyne detector is arranged to
measure a finite quadrature angle 0° < ϕ < 90°, the
cross-correlation term SIFðϕÞ in Eq. (1) becomes nonzero
and Sxx can be smaller than the SQL [Figs. 1(a) and 1(b),
dashed red line] [4,15]. Because SIF is real, an additional
requirement is that ~χmðωÞ has an imaginary part, which
happens only off resonance. In particular, Im½~χmðωÞSIFðϕÞ�
gives rise to a Fano-like frequency dependence, in analogy
to that observed in ponderomotive squeezing of light.
While such squeezed light has been observed [31–33],
improved measurements were far from accessible in pre-
vious experiments due to technical noise at large ϕ.
Figure 1(d) shows for comparison ponderomotive squeez-
ing of the cavity output light. The optimal measurement
phase (ϕopt) is rotated towards PM compared to the optimal
squeezing phase. While rotating towards AM introduces
the correlations of interest, it also dilutes mechanical
information found only in PM (see the Appendix). In
variational readout, ϕ is tuned as a function of frequency to
approach the QL over a broader range of frequencies [15].
Variational readout at a fixed power is illustrated by the red
line of Fig. 1(a). As seen in Fig. 1(b), the power can be
optimized in order to reach the QL (solid black line), which
corresponds to total noise at twice the zero-point motion.
Variational readout in a homodyne measurement is a

technique most suited to broadband, off-resonance dis-
placement or force measurement for 2jω − ωmj=Γ ≥ 1.
However, even for on-resonance force measurements quan-
tum correlations can be utilized by employing a two-tone
local oscillator, using recently proposed synodyne readout
[34]. Synodyne realizes single-quadrature measurement at a
given frequency within a range of near-resonant frequencies
(2jω − ωmj=Γ ≤ 1). (See the Supplemental Material for an
analysis of synodyne and its comparison to the SQL in a
frequency-domain picture analogous to Fig. 1 [35].)
Variational readout and synodyne are related in that they
both approach the readout problem by modifying the local
oscillator, instead of, for example, the intracavity field.
Lastly, note asymmetric line shapes associated with cross-
correlations have been recently observed in Ref. [36] using
an input quadrature squeezed probe in the microwave
domain, but an improvement in the off-resonance sensitivity
has not been shown to date. Squeezed light can also be used
independent of SIF to modify Îϕ or F̂ba to modify power
requirements [15,37]. Injecting squeezed vacuum into the
dark port of an interferometer is a technique that has already
been implemented in large-scale interferometers (such as
advanced LIGO), but their aim was to enable better
sensitivity in a fully shot-noise-limited band, without
increasing optical power [38].
In our experiments, we create an optical interferometer

consisting of a cryogenically compatible Fabry-Perot cavity
coupled to a high-stress Si3N4 membrane resonator
[33,39,40] [Fig. 1(c)]. We probe the motion of the (2,2)
membrane mode at ωm=2π ¼ 1.596 MHz (twice the
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fundamental frequency), with an exceptionally high-quality
factor ofQm ¼ 32 × 106. We optically damp and cool to an
effective linewidth of Γ=2π ¼ 340 Hz by injecting a tone
red detuned of the optical cavity. We linearly monitor the
displacement for the science described in this work by
injecting an on-resonant probe into the cavity. To yield a
mechanical spectrum with minimal thermal noise, even a
number of mechanical linewidths off resonance, we
precool the cavity and membrane to 120 mK and shield
the membrane mode by embedding it in a phononic
crystal [41,42]. At our chosen damping level, we measure
via sideband asymmetry a phonon occupation of
nth ¼ 1.29� 0.05; this final phonon occupation is defined
by the optical damping rate we choose, and is not limited
by added noise [40] (see Supplemental Material [35]).
The outgoing probe light is measured using balanced
homodyne detection, with a total quantum efficiency of
ϵ ¼ 0.350� 0.015. The single-photon coupling is inde-
pendently calibrated and found to be consistent with a value
of g=2π ¼ 39 Hz tightly bounded by the experimental data.
We start by measuring Sxx on or off resonance at

ϕ ¼ 90°, in which the measurement noise is similar to the
SQL [Fig. 2(a)]. For all frequencies the relative fraction of
measurement noise to the SQL at that frequency is
constant and equal to 1.7, as set by our quantum
efficiency. For the on-resonance measurements (triangles),
a total measured PSD of 5.3� 0.2 times the on-resonance
SQL added noise (SSQL) is realized, corresponding to
the smallest reported value to our knowledge [8,11,21].

This is due to our low phonon occupation and
high quantum efficiency. When we examine the data at
2ðω − ωmÞ=Γ ¼ 10 (circles), the total measured noise
reduces to twice the off-resonant SQL value because
the thermal disturbance component (Sm) drops faster than
the SQL [Fig. 1(a)].
When measuring at a finite intermediate angle (ϕ ¼ 45°),

a distinct Fano-like line shape due to the cross-correlations
appears [inset of Fig. 2(b)]. We see that the sensitivity is
increased over a range of frequencies off resonance.
Figures 2(b) and 3(a) show how a ϕ ¼ 45° measurement
(red) results in an imprecision below that at ϕ ¼ 90° (blue)
for frequencies above resonance and near the off-resonant
SQL power. On the other hand, at low powers (p ≪ 1)
there is no improvement because the SN contribution
increases as one adds more AM noise that does not contain
information about the resonator, and at high powers
(p ≫ 1) the backaction contribution is dominant over
the correlation and there is also no improvement.
In Fig. 2(b), we see the clear measurement improvement

when detecting at (ϕ ¼ 45°), and that its optimal power is at
a higher power than for the standard measurement con-
figuration (ϕ ¼ 90°). For a given mechanical detuning
[ρ ¼ 2ðω − ωmÞ=Γ], we find the optimal measurement
quadrature to be cotϕopt ¼ ϵpρj~χmðρÞj2, which depends
on both the quantum efficiency and measurement strength
(p). As derived in the Appendix, the achievable limit at the
optimal power (popt) depends on the quantum efficiency
according to

(a) (b)

FIG. 2. Measured displacement PSD for different frequencies and measurement angles as a function of normalized probe power p.
(a) Measurement at ϕ ¼ 90° at different frequencies: 2ðω − ωmÞ=Γ ¼ 0 (triangles), 2.5 (stars), 5 (squares), 10 (circles). (b) Measurement
at ϕ ¼ 90° (blue) and at ϕ ¼ 45° (red) compared to SN level at ϕ ¼ 90° quadrature (gray). Measurement at ϕ ¼ 45° at frequency
2ðω − ωmÞ=Γ ¼ −5 (square filled on left, dashed red line) results in larger imprecision, and at frequency 2ðω − ωmÞ=Γ ¼ 5 (square
filled on right, solid red line) results in reduced imprecision. The dashed black line is the QL for 2ðω − ωmÞ=Γ ¼ 5 evaluated at quantum
efficiency ϵ ¼ 0.35, plus thermal contribution due to nth ¼ 1.29. Red and blue lines are full power-dependent expectation for
corresponding data points. Inset: Measured PSD as a function of frequency 2ðω − ωmÞ=Γ, at ϕ ¼ 90° (blue) and ϕ ¼ 45° (red)
quadratures for power p ¼ 14, as indicated by the dotted box in main figure. For this choice of ϕ, negative detunings (red dashed) yield
worse sensitivity, while positive detunings (solid red) are improved. In both (a) and (b), the gray asterisks are SN measurement at
ϕ ¼ 90° for ϵ ¼ 0.35, and the dashed gray line is for ϵ ¼ 1.
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Sxxðρ;ϕopt; poptÞ ¼ 2

�
nth þ

1

2

�
j~χmðρÞj2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ϵ
þ 1 − ϵ

ϵ
ρ2

r
j~χmðρÞj2; ð2Þ

which is shown as the dashed black line in Fig. 2(b) for
ρ ¼ 5. The above result at unit quantum efficiency repro-
duces the expected QL at all frequencies, as the amount of
added noise is equal to the zero-point motion PSD con-
tribution [j~χmðρÞj2]. In comparison, a typical measurement
is at ϕ ¼ 90° (PM) and will scale with quantum efficiency
as j~χmðρÞj=

ffiffiffi
ϵ

p
. Note that at unit efficiency this is the

difference between QL and SQL.
In variational readout, the analysis quadrature would be

changed as a function of frequency to realize an optimal
measurement at all frequencies (reaching the QL at a single
frequency). In our work, while we do not vary the
quadrature in a single measurement, we are able to
reconstruct variational readout spectra from four different
measurements at different quadratures with the same power
[Fig. 3(b)]. In the inset of Fig. 3(b), we show the data
normalized to the corresponding off-resonant SQL at each
frequency [SSQLðωÞ] for an even larger probe power
(p ¼ 28), and we can quantitatively analyze our improve-
ment compared to the SQL, under the constraint of finite
quantum efficiency. At a frequency 2ðω − ωmÞ=Γ ¼ 12, we
find 1.55� 0.07 times the SQL value for ϕ ¼ 45°. Taking
into account our finite quantum efficiency, the minimum
added noise we could hope to achieve for a ϕ ¼ 90°
measurement is 1=

ffiffiffi
ϵ

p ¼ 1.7 times the SQL value and,
hence, measurement at ϕ ¼ 45° allows us to measure at
0.91� 0.04 times the finite quantum efficiency SQL. At
this frequency the thermal and zero-point motion

contribution of 0.3 (in units of off-resonance SSQL) is
small, compared to the added noise due to the probe
of 1.25.
The technique we demonstrate shows the value and

simplicity of utilizing imprecision-backaction correlations
when carrying out strong measurement. In this technique
the degree to which the SQL can be surpassed is greatly
dependent on the quantum efficiency of the probe. In the
future, pursuing higher quantum efficiency will be a natural
goal of a variety of detectors and, hence, extend the utility
of variational readout. High quantum efficiency combined
with the ability to arbitrarily manipulate the local oscillator
and corresponding correlations will offer useful opportu-
nities to advance broadband displacement and force sens-
ing beyond the standard quantum limit.
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program, and the National Science Foundation under Grant
No. 1125844. We thank W. P. Bowen, T. P. Purdy, O.
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APPENDIX: DERIVATIONS

1. Optomechanical interaction

The optomechanical interaction in the interferometer is
defined by the following Hamiltonian [43,44]:

Ĥ0 ¼
1

4
ℏωmðx̂2 þ p̂2Þ þ ℏωcâ†âþ ℏgx̂â†â; ðA1Þ

where ωm is the mechanical resonance frequency, x̂ (p̂) is
the mechanical position (momentum) fluctuation operator,

(a) (b)

FIG. 3. Components of variational readout. (a) Ratio of PSD in quadratures ϕ ¼ 45° (red), ϕ ¼ 60° (orange), and ϕ ¼ 75° (purple) to
that in ϕ ¼ 90° as a function of normalized probe power p. The top panel is at a detuning of 2ðω − ωmÞ=Γ ¼ 5, and the bottom panel at
2ðω − ωmÞ=Γ ¼ −5. (b) Reconstruction of variational readout for p ¼ 14. The measured quadratures [same colors as (a)] are placed in
the portion of the spectrum for which they provide the lowest imprecision. The result for ϕ ¼ 90° (blue) is shown for comparison. Inset:
Measured quadratures [same colors as (b)] at p ¼ 28 normalized to the corresponding SQL at each frequency.
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ωc is the optical cavity resonance frequency, â ðâ†Þ is the
optical intracavity annihilation (creation) operator, and g is
a single-photon optomechanical coupling constant. In this
way of writing the Hamiltonian, the position and momen-
tum operators are normalized to their zero-point fluctua-

tions xzp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωm

p
and pzp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
mℏωm

q
. Here, m is

the mechanical resonator effective mass and ℏ is the
reduced Planck constant. In our analysis the Hamiltonian
is linearized by assuming a large optical coherent state.
Thus, we write the optical annihilation operator as
â ¼ āþ û, with ā ¼ hâi, and neglecting the û†û term.

2. Heisenberg-Langevin equations
for the light operators

Here, we present the analysis of the Heisenberg-
Langevin equations for the probe light operator u, based
on the Hamiltonian given above. Similar to previous
analyses, we write the solution to the Heisenberg-
Langevin equations of motion of our optomechanical
system [33,43,45,46]. In subsequent sections we convert
the solutions to the units used in our final equations. In the
Supplemental Material [35], we add to these equations a
treatment of potential classical noise terms (and find them
to be negligible for our experimental parameters).
The probe light quadratures uAM and uPM are given by

�
ûAMðωÞ
ûPMðωÞ

�
¼
�
μ̂AMðωÞ
μ̂PMðωÞ

�

þ ffiffiffiffiffi
ϵκ

p
gā

�
π−ðωÞ 0

0 πþðωÞ

��
x̂ðωÞ
x̂ðωÞ

�
; ðA2Þ

here, μ̂AMðωÞ and μ̂PMðωÞ are the light shot-noise Langevin
operators for the amplitude (AM) ϕ ¼ 0°) and phase (PM)
(ϕ ¼ 90°) quadratures, ā is the intracavity coherent state
amplitude, ϵ is the quantum efficiency, x̂ðωÞ is the resonator
state, and π�ðωÞ are the constructive and destructive
cavity susceptibility interference functions defined as
πþðωÞ¼ χ�cð−ωÞþ χcðωÞ and π−ðωÞ¼ i½χ�cð−ωÞ−χcðωÞ�.
χcðωÞ is the cavity susceptibility given by
χcðωÞ ¼ ½κ=2 − iðωþ ΔÞ�−1, with Δ the probe detuning
relative to the cavity resonance and κ the optical cavity
linewidth.
The measured light operator at a given phase ϕ is given

by ûϕ ¼ ûAM cosϕ − ûPM sinϕ. We use this to calculate

the symmetrized light PSD, Sϕðω;ϕÞ ¼ hûϕð−ωÞûϕðωÞi
[4,43,47]. Then the dimensionless Sϕ is decomposed as
follows:

Sϕðω;ϕÞ ¼ 1þ fxxðω;ϕÞhx̂ x̂iðωÞ þ Sμx̂ðω;ϕÞ; ðA3Þ

where 1 is the probe shot noise, fxxðω;ϕÞ is the transfer
function from displacement to light, hx̂ x̂iðωÞ is the sym-
metrized resonator displacement distribution PSD, and
Sμx̂ðω;ϕÞ is the cross-correlation PSDbetween the light shot
noise and the resonator state as inferred by the probe.
To explicitly write the above functions, we define the

following cavity and light parameters: nth is the thermal
phonon occupation, Γ the effective mechanical linewidth,
ωm the resonator frequency, and the mechanical suscep-
tibility is given by χmðωÞ ¼ ½Γ=2 − iðω − ωmÞ�−1. We find

fxxðω;ϕÞ ¼ ϵκðgāÞ2fjχcð−ωÞj2 þ jχcðωÞj2g
− 2ϵκðgāÞ2Re½χcð−ωÞχcðωÞe−2iϕ�; ðA4Þ

Sμx̂ðω;ϕÞ ¼ ϵκðgāÞ2½jχcð−ωÞj2 − jχcðωÞj2�Im½iχmðωÞ�
− 2ϵκðgāÞ2Im½χcð−ωÞχcðωÞe−2iϕ�Re½iχmðωÞ�;

ðA5Þ

hx̂ x̂iðωÞ ¼ Γðnth þ 1=2ÞjχmðωÞj2

þ ðgāÞ2jχmðωÞj2
κ

2
½jχcð−ωÞj2 þ jχcðωÞj2�

þ
�

F
4pzp

�
2

jχmðωÞj2δðω − ωfÞ: ðA6Þ

In Eq. (A6), we include the response to external force (F),
applied on the resonator at a frequency ωf. Note that the Γ
and ωm are effective mechanical parameters due to well-
known optical damping and spring effects dominantly from
a red-detuned damping tone but with a very small con-
tribution from the small detuning of the probe [44].

3. Derivation of the standard quantum limit value

Here, we derive the SQL PSD (SSQL) using the result
above by minimizing the combined shot-noise and quan-
tum backaction terms [3].

SSQLðωÞ ¼ x2zpmin
ā;ϕ;Δ

�
1

fxxðω;ϕÞ
þ ðgāÞ2jχmðωÞj2

κ

2
½jχcð−ωÞj2 þ jχcðωÞj2�

�
; ðA7Þ

with fxxðω;ϕÞ the transfer function from displacement to

light (with units of hertz) of Eq. (A4). The SSQL is

composed only of the added noise by the measurement

probe (shot noise and quantum backaction), and ignores the

mechanical state (thermal and zero-point motion). This is

motivated from the point of view that the mechanical
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resonator state is the signal to measure. We note that in
Ref. [11] the zero-point motion is included in the total
noise.
The minimum value of the SQL PSD is found for the

detection angle of ϕ ¼ 90° and for probing on cavity
resonance (Δ ¼ 0). Additionally, we evaluate fxx for unity
detection efficiency (ϵ ¼ 1). With this we find the number
of photons required for SQL detection to be

ā2SQLðωÞ ¼
1

2κg2jχcðωÞj2jχmðωÞj
¼ Γ

4κg2jχcðωÞj2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q
; ðA8Þ

with ρ ¼ 2½ðω − ωmÞ=Γ� a dimensionless mechanical
detuning. We combine this result with Eq. (A7) to find

SSQLðωÞ ¼ x2zpjχmðωÞj ¼ x2zp
2

Γ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2
p : ðA9Þ

When evaluated on resonance the SQL value is
SSQLðωmÞ ¼ ½ℏ=ðmωmΓÞ�. We utilize a probe power (p)
normalized to the on-resonant SQL power; i.e.,
p ¼ fā2=½ā2SQLðωmÞ�g. Note that p is related to the com-
monly used optomechanical cooperativity (C) by C ¼
p=4 [11,44].

4. Converting measurement noise results
to dimensionless displacement PSD

In this section, we write the result of the Heisenberg-
Langevin equations for the light operators inferred as
displacement of the resonator and use it to evaluate the
displacement PSD. While the light equations and associ-
ated PSD have been derived many times in the literature
[33,43,45,46], our approach is to use quantum noise
notation, as described in, for example, Ref. [4], which
allows us to see more transparently how the QL can be
reached for a particular optical probe configuration.
The probe light operator converted to inferred displace-

ment X̂ is given by multiplying the probe light operator û
by xzp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxxðϕ ¼ 90°Þp

(¼ xzp=
ffiffiffiffiffiffiffiffi
ϵΓp

p
), which gives

dimensions of m=
ffiffiffiffiffiffi
Hz

p
. We normalize the displacement

by the on-resonance SQL amplitude [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSQLðωmÞ

p
]. We

also use a dimensionless mechanical susceptibility defined
by ~χmðρÞ ¼ χmðωÞ=jχmðωmÞj ¼ ð1 − iρÞ−1 and a dimen-
sionless cavity susceptibility ~χcðωÞ ¼ χcðωÞ=jχcðωmÞj.
With this, we write the AM and PM quadrature operators
for the inferred displacement as

X̂AMðωÞ ¼
1ffiffiffiffiffiffiffiffi

2ϵp
p

~χcðωÞ
μ̂AMðωÞ; ðA10Þ

X̂PMðωÞ ¼
1ffiffiffiffiffiffiffiffi

2ϵp
p

~χcðωÞ
μ̂PMðωÞ þ

ffiffiffi
Γ
2

r
x̂ðωÞ; ðA11Þ

ffiffiffi
Γ
2

r
x̂ðωÞ ¼ x̂mðωÞ − 2ωmχ

�
mð−ωÞ~χmðωÞF̂baðωÞ; ðA12Þ

with x̂m the resonator state (which includes zero-point
motion, thermal and external force) and F̂ba the dimension-
less backaction force applied onto the resonator. The
backaction operator is proportional to

ffiffiffiffi
p

p
and is a function

of the shot-noise AM quadrature operator [33,43].
Because the resonator (x̂) information is only in the PM

quadrature, the displacement phase dependence is given by

X̂ϕðωÞ ¼ − cotϕX̂AMðωÞ þ X̂PMðωÞ
¼ x̂mðωÞ þ Îϕ − 2ωm ~χ

�
mð−ωÞ~χmðωÞF̂baðωÞ

≅ x̂mðωÞ þ Îϕ − i~χmðωÞF̂baðωÞ: ðA13Þ

Here, we define the shot-noise displacement imprecision
operator to be Îϕ ¼ f1=½ ffiffiffiffiffiffiffiffi

2ϵp
p

~χcðωÞg½− cotϕμ̂AMðωÞþ
μ̂PMðωÞ�, from which it follows that there is a weak
frequency dependence proportional to j1=~χcðωÞj. In the
third line we take the limit of a high-Q resonator (Γ ≪ ωm).
Note that in AM cotϕ ¼ cot 0 ¼ ∞ corresponds to the case
in which all the information about the resonator is in the
ϕ ¼ 90° (PM) quadrature and, thus, the displacement
measurement diverges. It follows that the displacement
PSD is given by

SxxðωÞ ¼ hX̂ϕð−ωÞX̂ϕðωÞi
≅ SmðωÞ þ SIIðωÞ þ j~χmðρÞj2SFFðωÞ
þ 2Im½~χmðρÞSIF�; ðA14Þ

with functions given by

SmðωÞ ¼ 2

�
nth þ

1

2

�
j~χmðρÞj2; ðA15Þ

SIIðωÞ ¼
1þ cot2 ϕ
2ϵpj~χcðωÞj2

; ðA16Þ

SFFðωÞ ¼
1

2
pj~χcðωÞj2; ðA17Þ

SIFðωÞ ¼ −
1

2
cotϕ: ðA18Þ

Here, Sm is the displacement PSD of the resonator
including thermal and zero-point motion, in which we set
the external force to zero, SII is the displacement imprecision
PSD due to the probe SN and is inversely proportional to the
power, SFF is the displacement change due to the backaction
force, SIF is the cross-correlation term measured in homo-
dyne detection and is real, but in general it can be complex
[4]. For example, in synodyne detection the equivalent SIF is
complex and SIF ¼ −S�FI [34].
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When examining the contribution of the backaction in
Eq. (A13), there is a 90° phase delay with respect to the
shot-noise term (Îϕ). This means there is a time lag between
the backaction force applied on the resonator and the
measurement time. For this reason, there must be a
frequency dependence in the cross-correlation term.
Only the imaginary part of the mechanical susceptibility
Im ~χmðρÞ ¼ ρj~χmðρÞj2 contributes to the PSD.
It is also useful to explicitly write out the PSD with the

assumption j~χcðωÞj2 ¼ 1, which is a very good approxi-
mation for our experimental parameters:

Sxxðω; p;ϕÞ ¼ 2

�
nth þ

1

2

�
j~χmðωÞj2 þ

1þ cot2 ϕ
2ϵp

þ 1

2
pj~χmðωÞj2 − cotϕρj~χmðωÞj2: ðA19Þ

5. Comparison to uncertainty relations
and parameters for reaching the QL

Through Eqs. (A14)–(A19) we can compare the PSD to
the Heisenberg uncertainty relation [28] for the state of
probe light and to the SQL. The Heisenberg uncertainty
relation is given by

ΔÎ2ϕΔF̂2
ba ≥

1

4
jh½Îϕ; F̂ba�ij2 þ

1

4
jhfÎϕ; F̂bagij2;

SIISFF ≥
1

4
þ S2IF: ðA20Þ

For ϵ ¼ 1 and ϕ ¼ 90°, SIISFF ¼ 1
4
, which is the case for a

SQL measurement configuration, and is power indepen-
dent. But when measuring at some intermediate angle
(0° < ϕ < 90°), the measurement imprecision can be below
the SQL value of 1=4.
We can also determine the correct choice of p and ϕ to

reach the QL, when the additional contribution of the cross-
correlation term (SIF) is taken into account. When we
optimize the PSD [Eq. (A19)] to find the optimal meas-
urement phase, we find cotϕopt ¼ ϵpρj~χmðρÞj2. Placing
this back into Eq. (A19), we find the succinct consequence
of variational readout,

Sxxðρ;ϕopt; pÞ ¼ 2

�
nth þ

1

2

�
j~χmðρÞj2

þ 1

2ϵp
þ 1

2
p½1þ ð1 − ϵÞρ2�j~χmðρÞj4;

ðA21Þ

for a given quantum efficiency.
At the optimal power popt and optimal angle, one finds

precisely the QL:

Sxxðρ;ϕopt; poptÞ ¼ 2

�
nth þ

1

2

�
j~χmðρÞj2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ϵ
þ 1 − ϵ

ϵ
ρ2

r
j~χmðρÞj2; ðA22Þ

popt ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ½1þ ð1 − ϵÞρ2�
p

j~χmðρÞj2
: ðA23Þ

We recall that the QL for an ideal detector reaches one zero-
point motion contribution for each measured mechanical
quadrature [black lines in Fig. 1(a)].

6. Comparison to ponderomotive squeezing

The above analysis gives us the necessary tools to
directly compare the consequence of variational readout
on displacement sensitivity to the creation of ponder-
omotive squeezing. Namely, we can compare the Sϕ
derived in Appendix A 2 to Sxx to find that the light
PSD has a different ϕ dependence than the displacement
PSD [31–33]. We can write this as

Sϕðρ;ϕ; pÞ ¼ 2ϵp sin2 ϕSxxðρ;ϕ; pÞ: ðA24Þ

The different phase dependencies are illustrated in the main
text in Fig. 1(d). For light squeezing, the information about
the resonator does not matter. Conversely, for displacement
measurement, while the larger cross-correlation term
reduces the backaction contribution by rotating towards
the AM quadrature, it also dilutes mechanical information
found in the PM quadrature. For this reason, the optimal
ponderomotive squeezing angle is closer to the AM
quadrature than for the displacement measurement.
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