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Williamson, James Alexander (Ph.D., Electrical Engineering)

Low-Power System Design for Human-Borne Sensing

Thesis directed by Prof. Li Shang

Design for human-borne sensing faces a key challenge: to provide increasingly high-quality,

day-by-day sensing accuracy and reporting from an energy-constrained and aggressively miniatur-

ized computing form factor. Long-term maintenance-free operation is an another important goal

for devices intended to be carried by people throughout their daily life. The human sensor form

factor is driven by its energy storage requirements, hence power consumption resulting from data

sensing, processing, and communication.

This thesis studies the energy costs in the full end-to-end human sensor platform, however

specific attention is paid to optimizing energy use in the worn sensor device. Three computing

layers comprising the human sensor platform are examined: the human sensor device, the mobile

data aggregator, including smart phone and smart watch, and cloud-side data warehousing. The

heterogeneous compute and energy capacity qualities of the layers are exploited for both intra-layer

and cross-layer improvements in energy efficiency. Opportunities to offload power consumption

from the sensor device, thus enabling smaller battery capacity and further scaling of sensor device

form factor are prioritized. The full data handling flow, including data sensing, data cleaning,

feature extraction and classification, data communications and storage, is considered, and tradeoffs

between computed result accuracy and energy cost are tailored across a range of applications.

Wearable human sensor applications implemented and reported on in this thesis include

mobile online gait analysis for runners, grocery store aisle localization with augmented reality driven

item recommendation, and wearable in-field electroencephalographic brain sensing. Results include

improvements in energy-efficiency over the state-of-the-art, including an 11X speedup in cloud data

processing, a 47% power reduction in a wearable running sensor when applying a smartphone-to-

wearable collaboration, and, most significantly, a one-order-of-magnitude power reduction when
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applying an event-driven sparse adaptive sampling method to a wearable human running gait

analysis sensor.
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Chapter 1

Introduction

1.1 Problem Motivation

Human-borne sensing devices may soon enable revolutionary changes in many aspects of our

daily life. As the recently coined “wearables” implies, they are miniature embedded computing

systems worn by people. Their development is recently enabled by continued technology scaling

and the recent trend of deep feature integration of low-power embedded microprocessors. Wearables

provide day-to-day human data acquisition and analysis. Compared with mobile phones, wearables

target one order of magnitude form factor reduction, and have the potential to fulfill the vision of

quantified self, that is, interweaving technology into everyday life, providing self-tracking and auto-

analytics services [1, 2]. The usage cases of a tiny and therefore wearable computing form factor

are numerous. Applications from real-time medical tracking and alerting, to quantified sports and

fitness performance-based training, to new types of social interaction, to games and entertainment,

wearable devices have immense potential to expose the precise personalized knowledge we either

want or need to improve our lives right now, delivered exactly when it’s needed the most.

These devices combine micro-electromechanical (MEMs), physiological, or environmental sen-

sors with data processing capability, energy and data storage, and wireless communications to

enable autonomous information collection, interpretation, and reporting. Human sensing devices

must be tightly integrated with one’s person in order to sense and resolve accurate and reliable

information. For example, similar MEMs sensors are available on board a mobile phone, which is

also carried on one’s person daily. However, a mobile phone either does not follow the user at every



2

turn, for instance temporarily stored in a purse set on the floor, or placed on a battery charger, or

left on a table. Also, a mobile phone is not consistently well-coupled to the user. It is frequently

moved from a pocket to the hand and back. For a long-term IMU sensor system interested in cap-

turing the true movements of the user, this level of likely false and inconsistent sensor data recorded

from a mobile phone based sensing system cannot provide useful or actionable information. The

mass market has taken notice, although the vision of a truly transparent, 24 hours a day and 7

days per week operation, convenient and attention-free wearable has yet to arrive. According to

the International Data Corporation’s (IDC) Worldwide Quarterly Wearable Device Tracker1 , more

than 214 million wearable sensing devices will be shipped in 2019, a growth of more than 168%

over the already 80 million shipped in 2015.

Wearable sensor systems are not limited to the wearable sensor device worn on the body.

To usher in the age of “interconnected everything,” the following issues must be addressed across

three main areas.

• Wearable Sensor Devices: A major barrier to wearables user adoption has thus far been

device form factor. Current wearable sensor power budgets demand either batteries with

large capacity and therefore size, or frequent (every few days or weeks) battery recharging.

For example, let us consider the GPS sports watch. High active current means that while

monitoring the user, a battery sized for the wrist (e.g., 200 mAh) might yield only a 10

hour operation. The user is inconvenienced by being required to take off their watch and

recharge its battery without reaching even a half day’s use. Further, the typical cycle life of

a standard Lithium polymer rechargeable battery is only about 500 charge and discharge

cycles, meaning the user will need to replace the watch after only 1-2 years of use. Stated

directly, wearable device power consumption drives energy storage requirements drives

device form factor drives wearable transparency drives user convenience; in turn, wearable

device power consumption affects user adoption, reducing market interest, and the benefits

of wearable application development progress are stymied. Since improvements in Lithium

1 https://www.idc.com/getdoc.jsp?containerId=prUS40846515
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battery chemistry will only offer incremental increases in battery energy density over the

foreseeable future, we must instead prioritize energy-efficient wearable sensor system design.

• Mobile Smart Phones and Smart Watches: The effective energy capacity per year

of a daily recharged mobile phone or smart watch is enormous compared to a miniaturized

wearable device that operates, for example, on a single non-rechargeable coin-cell battery.

With the proliferation of high-speed cellular data networks, mobile phones enjoy always-on

connections to the Internet. Bluetooth Low Energy (BLE) radios now commonly found

in smart phones enable a clear method of connection with the worn sensor device. The

BLE standard enables a “pico-net,” a star network topology of many connected peripheral

sensor nodes with concurrent connections to one centralized master. The current state is

therefore such that a smart phone application could be written to effectively manage, and

aggregate data from a plethora of wearable sensor devices placed around the body to form a

body area network (BAN). However, decisions on which data processing stage the received

data from the worn sensor device comes in must be considered, e.g. data cleaning, data

fusion, feature extraction, and classification stages. Tradeoffs must be optimized in terms

of required Bluetooth and cellular communication bandwidth, data processing, storage,

and the energy costs of each weighed when prioritizing for either the mobile phone or the

wearable device energy budgets and expected level of application-driven user interactions.

• Cloud-based Personalized Auto-Analytics: A single human, living day-by-day and

second-by-second, is fast generating an immensely vast and rich amount of information.

With seven billion people living tightly interconnected lives here on Earth, the informa-

tion content creation, complexity, and density is staggering to consider. This information

will likely be sorted, indexed, and stored in back-end data warehousing servers in cloud

computing centers. After collection and storage, the information will need further inter-

pretation to be compared across people, time, places, and etc. Outside context, unknown

to the wearable sensor, can be applied at this stage and new trends and knowledge can be
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uncovered. Due to the extreme amount of data streaming to the cloud daily, this process

will require an always-on, highly parallel and distributed cloud computing architecture.

The required computing architectures are high performance, with high energy densities

and therefore wasted energy through heat loss. Further, they requiring large cooling solu-

tions, which may require as much or more energy to operate than the computing solution

itself. The challenge will be to develop energy-efficient means of comparing and processing

highly distributed data. One solution may be to match the design of the data streaming

architecture (and processing algorithms) to the structural characteristics of the data itself.

1.2 Research Contributions

Gazelle: A highly energy-efficient wearable device for long-term mobile online gait

analysis: Gazelle is a wearable online gait analysis system that is compact, lightweight, accurate,

and highly energy efficient; intended for all elite, fitness, and recreational runners. Gazelle uses

miniature MEMS sensors paired with novel techniques to greatly reduce the energy costs to perform

high-precision real-time running form analysis and feedback. It is a convenient, economical solution

for long-term running form analysis, unlocking insights into improvements in running performance

previously unreachable to the broad running community. A novel sensing technique, called Sparse

Adaptive Sensing (SAS), is also proposed that enables Gazelle to achieve the battery energy ef-

ficiency necessary for long-term maintenance-free mobile gait analysis. SAS selectively identifies

the best sampling points to maintain high accuracy while greatly reducing sensing and analysis

energy overheads. Experimental results demonstrate 95% accuracy with 73% to 99% reduction in

energy consumption, and 83.6% on average energy reduction under real-world racing conditions –

a one order of magnitude improvement compared with other gait analysis wearable devices. SAS

therefore enables high-precision wearable gait analysis with > 200 days of continuous operation

using only a small, economical coin-cell battery. Since 2014, Gazelle has been used by over 100 elite

and recreational runners during their daily training and at top-level races like the Kona Ironman

World Championships and New York Marathon.
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Parallel Cross-Layer Optimization: Increased cloud energy efficiency through expos-

ing data parallelism. A work to expose data parallelism in the VLSI CAD workflow, with

techniques applicable to the wearable device big data platform challenges of delivering accurate

and personalized services and auto-analytics. The boundaries between design layers are broken,

allowing for a more informed and efficient exploration of the design space. We leverage the hetero-

geneous parallel computational power in current and upcoming multi-core/many-core computation

platforms to suite the heterogeneous characteristics of multiple design layers. Specifically, we unify

the high-level and physical synthesis design layers for parallel cross-layer IC design optimization.

In addition, we introduce a massively-parallel GPU floorplanner with local and global convergence

test as the proposed physical synthesis design layer. Our results show average performance gains

of 11X speed-up over state-of-the-art.

Wearable EEG: Form factor trade studies of a novel human-borne physiological sensor

device. The current state-of-the-art in physiological monitoring solutions are ill-positioned: rely-

ing either on bio-sensors that measure intrinsically low-dimensional or sparse data (e.g. heart rate,

blood pressure, body temperature) or on highly complex sensors (PET, fMRI, MEG) that are too

difficult or impractical to integrate into a soldier’s operational routine. Few systems leverage the

electroencephalogram (EEG), which is the primary sensing technology for cognitive health moni-

toring. Furthermore, none of these solutions attack the problem from a total-system perspective,

instead often concentrating on advancement of individual sensor components or improvement in a

single targeted objective. For this work, we present a Soldier-borne wearable and wireless system for

physiological monitoring of Soldier cognitive state, combining EEG with a small biomedical sensor

suite. We compare our results with a commercial wireless EEG headset, and give further discus-

sion on the measured SWaP trades of the system. Finally, a software framework leveraging the

emerging Android smart phone platform is described that provides both on-board neurofeedback

to the soldier and a method of data exfiltration for future offline data analysis and data warehousing.
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ARFusion: Human localization leveraging mobile phone sensors combined with cloud-

based image recognition and contextual awareness. Augmented reality (AR) applications

have recently become popular on modern smartphones, which also carry MEMs-based inertial

measurement units (IMUs), digital compasses, and high-resolution cameras. Mobile AR technology

is enabled through the localization of a user in a grocery store aisle. Real-time mobile phone IMU

and digital compass sensor data are combined with static image recognition performed in the cloud

to provide a correct physical reference frame of the user for projecting the AR video overlays.

We explore the effectiveness of this mobile AR technology in the context of grocery shopping, in

particular as a means to assist shoppers in making healthier decisions as they decide which grocery

products to buy. We construct an AR-assisted mobile grocery shopping application that makes

real-time, customized recommendations of healthy products to users and also highlights products

to avoid for various types of health concerns, such as allergies to milk or nut products, low sodium

or low fat diets, and general caloric intake. We have implemented a prototype of this AR-assisted

mobile grocery shopping application and evaluated its effectiveness in grocery store aisles. Our

application’s evaluation with typical grocery shoppers demonstrates that AR overlay tagging of

products reduces the search time to find healthy food items, and that coloring the tags helps to

improve the user’s ability to quickly and easily identify recommended products, as well as products

to avoid. We have evaluated our application’s functionality by analyzing the data we collected from

15 in-person actual grocery shopping subjects and 104 online application survey participants.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 presents a background for

understanding of the sources of power consumption in a human-borne wearable sensing device.

Software and hardware design opportunities for improving battery life are identified, as well as the

corresponding challenges and barriers. Example novel solutions to reduce energy in each category

are proposed and evaluated. Chapter 3 investigates new algorithms for energy reduction in the
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cloud computing layer of the human-borne sensing system. Specifically, heterogeneous cloud com-

puting architectures are leveraged to expose parallelism in a computing workload, thus reducing

the energy cost. Chapter 4 examines the interaction between the cloud and mobile device layers in

a human-sensing system. Mobile phone sensors combine with cloud-based image recognition to per-

form human localization in a grocery store aisle. Augmented-reality is used to recommend nearby

healthy food items to grocery shoppers, without the cost or maintenance of additional in-store

infrastructure. A pilot study is conducted to learn the usefulness of the system. Chapter 5 explores

the impact of size and weight on power consumption and energy storage in a human sensing device,

using a wearable and modular electroencephalography (EEG) sensing device as the example hu-

man sensor system. Chapter 6 presents Gazelle, an energy-efficient long-term monitor for accurate

mobile online gait analysis during daily run training. Gazelle applies techniques from previous

chapters along with those newly proposed to significantly reduce energy consumption and enable a

long-term, maintenance free operation on a single economical coin-cell battery. A real-time sparse

adaptive sampling (SAS) technique is introduced which leverages application-specific running signal

information, resulting in significant reduction in energy consumption with minimal impact to gait

analysis accuracy. A real-world pilot study comparing accuracy and energy reduction is included

in the results. Finally, Chapter 7 concludes the thesis, and future research directions and topics

are discussed.



Chapter 2

Background

Wearables are a leading category in the Internet of Things. Compared with mainstream

mobile phones, wearables target one order of magnitude form factor reduction, and offer the po-

tential of providing ubiquitous, personalized services to end users. Aggressive reduction in size

imposes serious limits on battery capacity. Wearables are equipped with a range of sensors, such as

accelerometers and gyroscopes. Most economical sensors were developed for mobile phones, with

energy consumptions more appropriate for phones than for ultracompact wearables. This chapter

describes the energy challenges for wearable sensing technologies, with a primary focus on the most

widely used wearable sensors: MEMS-based inertial measurement units. Using sports and fitness

wearables as the pilot application, we analyze the energy characteristics of MEMS IMU data sens-

ing, analysis, and wireless communication. We then discuss the technologies needed to solve the

power and energy consumptions challenges for wearables.

2.1 Related Work

The concept of wearable technology is not entirely new–people started wearing electronic

watches back in the 1980s. Since late 2000, the technology development and market penetration of

wearables have experienced astonishing growth, fostered by several technology drivers. First, low-

power semiconductor technology is the key enabler for aggressive form factor scaling. Wearable

devices are powered by batteries. Size constraints limit battery capacity. Low-power ICs are

essential to support reasonable system operation lifetimes given the stringent energy constraints.
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Second, the wide-adoption of mobile phone platforms provides eco-system support for wearables,

e.g., data services and user interaction. Third, the proliferation of embedded computing turn-

key platforms make it possible for a small team of engineers to rapidly move from design, to

prototype, to large-scale production. To date, hundreds of wearable solutions have approached the

market, covering a wide range of application domains [3, 4, 5]. Sensing is the primary functionality

of wearables. A wearable device consists of a set of miniature micro-electromechanical (MEMS)

sensors to measure human biological data, e.g., physiology and motion data. The data gathered is

then processed by a lower-power embedded microprocessor. Raw sensing data is typically discarded

afterwards. The processed information, in much more compacted form, is stored and transferred

to remote devices, e.g., a mobile phone, through low-power wireless interface [4, 6]. Wearables face

several challenges, among which energy consumption dominates. Miniature form factor is essential

for wearable systems, leaving little space to accommodate sufficient energy storage. Existing mobile

phones are typically equipped with rechargeable batteries with capacities on the order of thousands

of mAh. The batteries used in wearables, on the other hand, can only provide up to a few hundreds

of mAh. For instance, many wearables are powered by the 225 mAh CR2032 coin-cell battery. In

addition, CR2032 has limited peak current capacity. Violating this limit accelerates battery aging.

The total amount of deliverable energy can easily go below 100 mAh if the continuous discharge

current is above a few milliamps [6].

Second, wearable sensors are expected to function 24/7, without the need for human inter-

vention or maintenance. Mobile phones, on the other hand, are used in a more interactive hence

less energy demanding fashion. Additionally, it is a norm that people typically charge their mobile

phones once per day. The expected battery lifetime for wearables, on the other hand, is signifi-

cantly longer. For instance, most existing pedometer-based activity tracking devices claim at least

one-week operation before requiring recharging. Some of the devices even claim over one year of

battery life, which limits the average operation current to tens of microamps.

Aggressive form factor scaling plus expected long operation time impose serious energy limi-

tations on wearable systems. In particular, most economical MEMS sensors were developed for use
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Figure 2.1: A real-world wearable sports monitor. System teardown photo (left), and generalized
wearable system archetype (right).

in mobile phones and have energy consumptions more appropriate for phones than ultra-compact

wearables. For instance, the active current of a MEMS gyroscope is a few milliamps, which would

drain a CR2032 within a few days.

In this chapter, we address the energy challenges faced by wearable sensing technologies, with

a primary focus on the most widely used wearable sensors: MEMS-based inertial measurement units

(IMUs), such as accelerometers and gyroscopes. Using sports and fitness wearables as the pilot

application, we analyze the energy characteristics of wearable data sensing, analysis, and wireless

communication. We then discuss technologies needed to solve the power and energy consumption

challenges for wearables.

2.2 Wearable Sensing System Architecture

Figure 2.1 shows the teardown of a recently released real-world wearable sensing product

[7]. Worn on the wrist or ankle, the device senses and analyzes the athlete’s performance, records

training histories, and provides real-time coaching. It uses a range of MEMS IMUs for high-

precision motion sensing and recognition in sports, such as running, boxing, swimming, and cycling.
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It samples raw gyroscope, accelerometer, and magnetometer data, processes the data to detect

corresponding motion features, and stores the results internally before transmission over a Bluetooth

Low Energy (BLE) wireless interface to a mobile phone.

Figure 2.1 shows a representative system archetype for emerging wearables: 1) system-on-chip

with low-power microprocessor and wireless interface, 2) 9-axis MEMS IMU suite, e.g., accelerom-

eter, gyroscope, and magnetometer, 3) environmental sensor suite, e.g., temperature, pressure, and

humidity, 4) physiological sensors, e.g., heart rate or respiration rate, 5) actuators, e.g. visual, au-

ditory, or haptic feedback, 6) external flash data storage, and 7) Li-ion battery and system power

management.

A limited energy budget is the primary constraint on wearables. For instance, the prod-

uct shown in Figure 2.1 claims to support up to eight hours of uninterrupted activity tracking.

Considering the vision of offering maintenance-free, ubiquitous services, there is a long way to

go.

2.3 Sensing Power Consumption Sources

This section studies the energy characteristics of wearable data sensing and analysis flow [8].

The key energy contributor of each of the phases is identified, and energy optimization opportunities

are explored.

2.3.1 Data Sensing

Wearable devices sense human biological data and then convert them into digital signals

for interpretation by a microprocessor. MEMS sensor ICs, especially MEMS IMUs, are the de

facto wearable sensing technologies, as they offer compact integration of sensing element, analog

signal conditioning, and analog-to-digital (ADC) converter into a miniature package [9]. Figure 2.2

shows the average current use of three of the most widely used MEMS IMUs, i.e., accelerometer,

gyroscope, and magnetometer. Figure 2.2 provides the following observations:
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Figure 2.2: Power consumption of MEMS IMU sensors: accelerometer, gyroscope, and magnetome-
ter currents are shown across frequency and operational mode.

• MEMS IMU active current is high. The peak energy demand far exceeds the energy bud-

get of wearables. MEMS IMUs adopted by wearables were first developed for mainstream

mobile phones. Smartphones have orders of magnitude larger energy budgets than wear-

ables. Their batteries have capacities of thousands of mAh that users are expected to

recharge daily while wearables are space constrained and have battery capacities of tens or

hundreds of mAh, and must ideally operate for weeks or even months without recharging.

Therefore, MEMS IMU active current is insignificant compared to energy-consuming mo-

bile phone components (e.g., the display) however they can dominate energy consumption

for a wearable.

• MEMS IMU supply current is proportional to sensing frequency, data resolution, and SNR.

Tradeoffs can be made to reduce the MEMS IMU sensing current at the expense of either

reducing SNR or data resolutions. Mainstream MEMS IMUs support a low power economy

mode that reduces current at the cost of increased sensor noise [10]. Reducing sampling

rates similarly reduces current but limits the frequency range of the sensed signal. Reducing

resolution, e.g., an 8-bit versus 24-bit ADC, results in the loss of fine-grain signal features.
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Table 2.1: Average current by application resulting from traditional power management techniques.

Activity Sensors ODR (Hz) Current (µA)
Sample-based FIFO (512 B)

SPI Total SPI Total

Motion Wake Acc. 0.98 2.0 01 2.0 01 2.0

Activity Recognition Acc. 200 38 106 144 71 109

Acc. 1344 185 713 898 475 660
3D Motion Capture Gyro. 1000 5280 531 5811 354 5634

Total 5465 1244 6709 829 6294

Acc. 200 38 106 144 74 109
Navigation Gyro. 200 3440 106 3546 71 3511

Mag. 20 275 11 286 7 282
Total 3753 223 3976 149 3902

1: Interrupt-driven MEMS IMU motion wake event notification.

• MEMS IMUs may have high idle currents. 24/7 energy management is essential. The idle

current of MEMS IMUs can be in the microamp to milliamp range. Milliamp idle current

is possible in the case of some high-performance gyroscopes, which keep their vibrational

element running to ensure a fast startup time. Three MEMS IMUs with power down

current around 10 µA each would, when always idle, drain a CR2032 in less than one year.

Power gating, in which a MOSFET can temporarily turn on and off the supply power, can

effectively minimize idle current.

The energy consumption of the digital data communication interface, e.g., I2C or SPI, is also

important. The microprocessor needs to remain active during communication, to minimize data

transfer time, i.e., increasing serial data clocking or reducing data size, is critical. Reducing data

communication overhead, in particular communication protocol traffic, is possible by leveraging

data buffering inside MEMS IMUs. Table 2.1 shows the current comparison between sample-by-

sample and batch-mode data transfer using a 512 B buffer. The results are calculated based on a

set of frequently encountered wearable sensing applications [11, 12, 13].
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2.3.2 Data Analysis

This section analyzes the energy consumption of the wearable data analysis flow, which

consists of data cleaning, feature extraction, and data fusion.

2.3.2.1 Data Cleaning

MEMS sensor output data may be noisy. Data cleaning, or noise removal, is the first step of

data analysis. For instance, the raw sensing data must be filtered to improve SNR before feature

extraction. Basic filtering and down sampling, i.e. decimation, are sometimes supported by the

MEMS device itself. However, often times, software based data cleaning is needed. Software-

based signal processing offers flexible tradeoffs between filter precision (e.g., integer, fixed point,

or floating point), accuracy (e.g., precision and phase delay), and energy efficiency. MEMS sensors

are also sensitive to environmental effects, e.g., temperature, humidity, altitude, magnetic field

distortion, and others. MEMS magnetometers must be continuously calibrated to remove hard

and soft iron effects, a process that periodically consumes energy. MEMS gyroscopes suffer from

drifting when integrating degrees per second to produce angular position. MEMS barometers are

particularly sensitive to temperature. Temperature compensation formulas are computationally

expensive, requiring 64-bit or floating point precision, and therefore significant energy from the

microprocessor.

Figure 2.3 shows a comparison between different software-based filtering methods, widely used

for data cleaning. Measured processing time per sample shows these filters can perform real-time

processing of single axis sensor streams at up to 100 kHz data rate on a low-power ARM Cortex-

M0. From the timing perspective, an energy budget supporting a 30% active microprocessor and

a 1 kHz 6-axis MEMS IMU can implement a 20th order FIR Q15 fixed point filter while meeting

a tight timing constraint. In addition, a fixed point filter uses an order-of-magnitude less energy

than a floating point filter.
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Fig. 3. Running gait analysis data processing operations measured on 
a low-power 32-bit ARM Cortex-M0. Floating point operations were 
accomplished in software. 

Fig. 3 shows a comparison between different software-
based filtering methods, widely used for data cleaning. 
Measured processing time per sample shows these filters can 
perform real-time processing of single axis sensor streams at 
up to 100 kHz data rate on a low-power ARM Cortex-M0. 
From the timing perspective, an energy budget supporting a 
30% active microprocessor and a 1 kHz 6-axis MEMS IMU 
can implement a 20th order FIR Q15 fixed point filter while 
meeting a tight timing constraint. In addition, a fixed point 
filter uses an order-of-magnitude less energy than a floating 
point filter.  
 

3.2.2 Feature Extraction & Data Fusion 

After data cleaning, feature extraction and data fusion are 
performed, in which power efficiency can be improved 
through an optimized software/hardware algorithm solution. 
In the running application, feature extraction requires 
transforming accelerometer data into the frequency domain 
with Fast Fourier Transform (FFT). Frequencies unrelated to 
gait-specific features are then removed before inverse FFT is 
used to transform the signal back to the time domain. As 
shown in Fig. 3, FFT is computationally intensive. An 
alternative method is to apply a high-pass filter for gravity 
removal first, followed by noise removal using low-pass 
filtering. Using 2nd order IIR fixed point filter instead of 64 
points FFT and inverse FFT for data filtering can achieve 400 
times energy saving. 

Data fusion intelligently combines data collected from 
multiple sensors. For instance, linear acceleration and angular 
velocity data are often combined in high-precision motion 
capture. Quaternions provide a method for tracking an object�s 
orientation and rotation in a 3D space, making them useful for 
3D motion tracking and navigational applications. Data fusion 
often computationally intensive operations, e.g., floating point 
square root and trigonometric operations. Since floating point 
units are not often available on a wearable, many of these 
operations are completed via software emulation, which is 

both time and energy intensive. A recent trend is to directly 
output quaternions from the IMU in fixed point to minimize 
the energy use of the microprocessor. Sensor fusion with 
quaternions on the IMU requires 50 µA, resulting in 8.8 times 
energy savings when sensor sampling rate is 200 Hz. 
Computing quaternions on the IMU brings the lowest energy 
consumption, but until more IMU manufacturers incorporate 
this feature, other solutions must be considered. 

 
3.2.3 Collaborative Processing 

Data processing is end to end�from wearable device, 
mobile phone, to the cloud. Among which, computing 
capabilities increase; so does the energy budget. Efficient 
partitioning of the processing workload across these platforms 
is the key to enable energy savings on wearables. 

Collaborative processing is beneficial when the energy 
needed for computation on the wearable device is higher than 
that for wireless communication to the mobile phone or the 
cloud. Our study shows that, energy-optimal partitioning often 
supports feature extraction and data fusion. More specifically, 
data cleaning and feature extraction are performed by 
wearables, and data fusion is performed by a mobile phone or 
in the cloud. Considering a 9-axis IMU operating at 1 kHz, 
approximately 20 KB of raw data are produced per second. 
After feature extraction, the data are reduced to a set of 
compact gait-analysis features, with orders of magnitude data 
size reduction. The corresponding energy overhead for 
wireless data communication is low. On the other hand, data 
fusion is computationally intensive. Consider performing 
quaternion operations on the smartphone instead of a wearable 
device without a built-in quaternion processing IMU, by 
streaming raw data wirelessly to smartphone for data fusion. 
At 200 Hz, Quaternion computation current is 440 µA, while 
sending data to mobile phone requires 202 µA. Collaborative 
processing reduces energy consumption by 54%. Moreover, 
high-precision data analysis requires signal processing across 
a large data series. Wearables are most suited to streaming and 
processing short data sequences.  

 
3.2.4 Compressive Sensing 

Human biological information is band limited, or sparse. 
Compressive sensing is an efficient technique for data 
acquisition and reconstruction when the sensed signal is 
sparse in time or other basis domains [16]. Fig. 4 shows an 
example of single axis acceleration running signal and the 
coefficients of its discrete cosine transform (DCT). It can be 
seen that a running acceleration signal is sparse (i.e., 
compressible) when represented by a cosine basis. As such, 
compressive sensing can be applied to reduce the amount of 
data that needs to be stored and transferred through wireless 
communication [16, 17, 18]. According to compressive 
sensing, the compressed signal 

! = !x 
where M is the sensing matrix, needs to satisfy the restricted 
isometry property (RIP) in order to reconstruct the signal. 
Showing compressive sensing in the running application, 400 
Hz accelerometer data is sampled, transformed into the 

0.1!

1!

10!

100!

1000!

2n
d 

O
rd

.;!
Fl

oa
t!

2n
d 

O
rd

;!
Q

15
!

20
th

 O
rd

er
;!

Fl
oa

t!
20

th
 O

rd
er

;!
Q

15
!

Le
ng

th
!

N 
= 

64
!

Le
ng

th
!

N 
= 

25
6!

Le
ng

th
!

N 
= 

51
2!

Le
ng

th
!

N 
= 

10
24
!

1-
ax

is 
Ac

c.
!

& 
G

yr
o.
!

2-
ax

is 
Ac

c.
!

& 
G

yr
o.
!

3-
ax

is 
Ac

c.
!

 &
 G

yr
o.
!

IIR! FIR! FFT! Quaternion!

En
er

gy
/S

am
pl

e 
(μ

 J
)!

Figure 2.3: Running gait analysis data processing operations measured on a low-power 32-bit ARM
Cortex-M0. Floating point operations were accomplished in software.

2.3.2.2 Feature Extraction & Data Fusion

After data cleaning, feature extraction and data fusion are performed, in which power effi-

ciency can be improved through an optimized software/hardware algorithm solution. In the running

application, feature extraction requires transforming accelerometer data into the frequency domain

with Fast Fourier Transform (FFT). Frequencies unrelated to gait-specific features are then re-

moved before inverse FFT is used to transform the signal back to the time domain. As shown

in Figure 2.3, FFT is computationally intensive. An alternative method is to apply a high-pass

filter for gravity removal first, followed by noise removal using low-pass filtering. Using 2nd order

IIR fixed point filter instead of 64 point FFT and inverse FFT for data filtering can achieve 400

times energy saving. Data fusion intelligently combines data collected from multiple sensors. For

instance, linear acceleration and angular velocity data are often combined in high-precision motion

capture. Quaternions provide a method for tracking an object’s orientation and rotation in a 3D

space, making them useful for 3D motion tracking and navigational applications. Data fusion often

computationally intensive operations, e.g., floating point square root and trigonometric operations.

Since floating point units are not often available on a wearable, many of these operations are com-
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Table 2.2: Bluetooth LE advertising event and connection event current.

BLE Event Phase
Advertising Event Connection Event

Current (mA) Duration (µs) Current (mA) Duration (µs)

Sleep 0.6 1400 0.6 1000
Pre-processing 3.025 800 3.025 800
TX/RX (1 packet) 11 1300 12 450
Post-processing 4.8 500 5.2 250

Peak Current (mA) 14.8 14.8
Avg. Current (mA) 4.99 3.89

pleted via software emulation, which is both time and energy intensive. A recent trend is to directly

output quaternions from the IMU in fixed point to minimize the energy use of the microprocessor.

Sensor fusion with quaternions on the IMU requires 50µA, resulting in 8.8 times energy savings

when sensor sampling rate is 200 Hz. Computing quaternions on the IMU brings the lowest energy

consumption, but until more IMU manufacturers incorporate this feature, other solutions must be

considered.

2.3.3 Communication

Wearables connect to mobile phones and/or the cloud via wireless interfaces. Among existing

wireless communication solutions, Bluetooth Low Energy (BLE) has become the de facto commu-

nication interface for wearables [5, 14], and is supported by most mobile phone platforms. The

current profiles for Bluetooth LE connection and advertising events are shown in Table 2.2. These

events are brief opportunities to transmit data taken between long intervals of sleep. Sleep interval

time can range from 20 ms or more when advertising (a form of connectionless broadcast) and can

range from 7.5 ms to 4 seconds between events in a connection. Advertising can also be selectively

enabled and disabled, further extending the sleep interval. During a connection event, up to six

packets containing 20 bytes each can be transmitted in both directions, i.e., from peripheral (slave)

to central (master) or vice versa. Assuming a 40 byte duplex packet is sent once every four seconds,

sleeping for more than 99.9% of the time is possible, but a precision timer must continuously run.

Figure 2.5 plots the relationship between sleep interval lengths between connection and advertising
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events and the resulting average current. Background current to keep a BLE connection active is

significant over the life of a wearable, and that average current can be further reduced using BLE

advertising alone.

2.4 Mobile Phone and Sensing Device Collaboration

2.4.1 Collaborative Sensing

Energy optimization techniques, such as power gating, sampling frequency scaling, and con-

figurable operational mode, are essential to deliver energy-efficient wearable sensing capabilities.

Additionally, wearables operate as smart peripherals of mobile phones. Therefore, energy opti-

mization for wearable sensing must cross the boundary between wearables and mobile phones.

Specifically, instead of powering wearables to perform data sensing 24/7, a part of the data sensing

task can be offloaded to mobile phone to minimize the energy use of wearables. This is the ba-

sic idea of energy-efficient collaborative sensing. Consider the running application. Accurate gait

analysis requires direct motion data gathering from the athlete’s foot. Additionally, IMU sensors

need to operate in the 100 Hz to 1 kHz range. Such in-situ high-precision gait analysis can only be

performed properly by wearables. On the other hand, most athletes only run approximately half

an hour each day, and conduct other activities during the rest of the day, e.g., walking and driving,

for which low-precision data sensing is sufficient.

Energy-efficient collaborative sensing works as follows. A mobile phone serves as a master

sensing device and performs continuous activity monitoring and detection. The activity recogni-

tion algorithm builds upon adaptive low-frequency motion sensing, with sampling frequency ranging

between one to 100 Hz, which provides sufficient resolution for a classification algorithm to deter-

mine the status of the athlete [15, 16]. When an activity is detected, the mobile phone decides

whether the activation of high-precision wearable sensors is needed. For most day-to-day activi-

ties, e.g., walking, sitting, or driving, high-precision sensing is not triggered, thus reducing energy

consumption. On the other hand, when sports-related activities are detected (e.g., running) the
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mobile phone will notify the wearable, which performs high-precision sensing. Note that, to opti-

mize wearable sensing energy efficiency, the sampling rate and data resolution of each type of IMU

need to be customized individually and adjusted dynamically. Assuming a typical usage scenario

explained above, and using the IMU configurations shown in Table 2.1 and Figure 2.2, potential

energy savings can be achieved as follows.

(1) Operational mode & freq. scaling: Dynamic scaling of mode and sampling rate drops

daily energy due to data sensing reduces from 83.8 (constant high-power mode with 1 kHz

sampling rate) to 5.2 mAh, a 94% saving.

(2) FIFO & Power gating: Using a small FIFO buffer, reduces running current from 6.7 to

6.3 mA, activity recognition current from 144 to 109µA, and the 12-hour idle current from

12µA to 10 nA. Daily energy is now 4.5 mAh, an 11% saving over case 1.

(3) Collaborative sensing: Activity recognition is offloaded to the mobile phone, leaving the

device to sense only running. 4.7 µA is used to maintain the connection with the mobile

phone. This reduces daily energy consumption to 3.1 mAh, a 29% savings over case 2 and

a 96% saving over the non-optimized case.

2.4.2 Collaborative Processing

Data processing is end to end – from wearable device, mobile phone, to the cloud. Among

which, computing capabilities increase; so does the energy budget. Efficient partitioning of the

processing workload across these platforms is the key to enable energy savings on wearables. Col-

laborative processing is beneficial when the energy needed for computation on the wearable device

is higher than that for wireless communication to the mobile phone or the cloud. Our study shows

that, energy-optimal partitioning often supports feature extraction and data fusion. More specifi-

cally, data cleaning and feature extraction are performed by wearables, and data fusion is performed

by a mobile phone or in the cloud. Considering a 9-axis IMU operating at 1 kHz, approximately

20 KB of raw data are produced per second. After feature extraction, the data are reduced to a set
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of compact gait-analysis features, with orders of magnitude data size reduction. The corresponding

energy overhead for wireless data communication is low. On the other hand, data fusion is com-

putationally intensive. Consider performing quaternion operations on the smartphone instead of a

wearable device without a built-in quaternion processing IMU, by streaming raw data wirelessly to

smartphone for data fusion. At 200 Hz, Quaternion computation current is 440µA, while sending

data to mobile phone requires 202µA. Collaborative processing reduces energy consumption by

54%. Moreover, high-precision data analysis requires signal processing across a large data series.

Wearables are most suited to streaming and processing short data sequences.

2.4.3 Compressive Sensing

Human biological information is band limited, or sparse. Compressive sensing is an efficient

technique for data acquisition and reconstruction when the sensed signal is sparse in time or other

basis domains [17]. Figure 2.4 shows an example of single axis acceleration running signal and the

coefficients of its discrete cosine transform (DCT). It can be seen that a running acceleration signal

is sparse (i.e., compressible) when represented by a cosine basis. As such, compressive sensing can

be applied to reduce the amount of data that needs to be stored and transferred through wireless

communication [17, 18, 19]. According to compressive sensing, the compressed signal

y = Mx (2.1)

where M is the sensing matrix, needs to satisfy the restricted isometry property (RIP) in

order to reconstruct the signal. Showing compressive sensing in the running application, 400 Hz

accelerometer data is sampled, transformed into the sparsely represented signal, then using the

sensing matrix we get the compressed signal for wireless transmission. As seen in Figure 2.4, the

compression ratio can achieve 80% while still achieving high cadence detection accuracy. Then, the

device only needs to send 20% of the original samples to the mobile phone. SNR is relatively low

(3.48), but cadence is still robustly detectable with reduced processing and communication energy.

To compute energy savings, we consider the connection event energy in Table 2.2 and the
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sparsely represented signal, then using the sensing matrix we 
get the compressed signal for wireless transmission. As seen 
in Fig. 4, the compression ratio can achieve 80% while still 
achieving high cadence detection accuracy. Then, the device 
only needs to send 20% of the original samples to the mobile 
phone. SNR is relatively low (3.48), but cadence is still 
robustly detectable with reduced processing and 
communication energy. 

Fig. 4. Compressed sensing of running cadence. Original signal (top 
left), its DCT coefficients (top right), and its compressed 
reconstruction compared to the original signal (bottom). 
 

To compute energy savings, we consider the connection 
event energy in Table II and the quaternion energy in Fig. 3. 
Computing quaternions on the device takes 550 µA. 
Performing compressive sensing takes less than 5% of the 
CPU time [17], i.e., 250 µA, and sending 20% data to 
smartphone for quaternion sensor fusion takes 40 µA. Overall, 
compressive sensing reduces device power use by 47%.  

 
3.3 Communication 

    Wearables connect to mobile phones and/or the cloud via 
wireless interfaces. Among existing wireless communication 
solutions, Bluetooth Low Energy (BLE) has become the de 
facto communication interface for wearables [5, 19], and is 
supported by most mobile phone platforms. The current 
profiles for Bluetooth LE connection and advertising events 
are shown in Table II. These events are brief opportunities to 
transmit data taken between long intervals of sleep. Sleep 
interval time can range from 20 ms or more when advertising 
(a form of connectionless broadcast) and can range from 7.5 
ms to 4 seconds between events in a connection. Advertising 
can also be selectively enabled and disabled, further extending 
the sleep interval. During a connection event, up to six packets 
containing 20 bytes each can be transmitted in both directions, 
i.e., from peripheral (slave) to central (master) or vice versa. 
Assuming a 40-byte duplex packet is sent once every four 
seconds, sleeping for more than 99.9% of the time is possible, 
but a precision timer must continuously run. Fig. 5 plots the 
relationship between sleep interval lengths between 
connection and advertising events and the resulting average 
current. Background current to keep a BLE connection active 
is significant over the life of a wearable, and that average 
current can be further reduced using BLE advertising alone. 

TABLE II  
Bluetooth LE advertising event and connection event current. 

BLE Event Phase 
Advertising Event Connection Event 

Current 
(mA) 

Duration 
(µs) 

Current 
(mA) 

Duration 
(µs) 

Sleep 0.6 1400 0.6 1000 
Pre-processing 3.025 800 3.025 800 
TX/RX (1 packet) 11 1300 12 450 
Post-Processing 4.8 500 5.2 250 

Peak Curr. (mA) 14.8 14.8 
Avg. Curr. (mA) 4.99 3.89 

 

Fig. 5. Average current of the supported intervals Bluetooth LE 
connections and advertising events. Connection events using from 
one to six packets per event are shown. The grey area indicates 
background current required to keep a connection active.  
 

3.3.3 Connectionless Communication 
    The average connection current in Fig. 5 shows that the 
energy efficiency of BLE is constrained by the maintenance of 
connectivity status, for which the device needs to periodically 
send beacons to the mobile phone, requiring a precise 
synchronization timing background current. Wearable 
communication is generally outgoing, only. Often, wearables 
operate in a standalone mode. Therefore, maintaining the 
connectivity between wearables and mobile phones is often 
not needed. Connectionless communication aims to eliminate 
such unnecessary energy overhead. Specifically, mobile 
phones and wearables do not maintain a wireless connection. 
Instead, wearables stay offline and shut down the BLE 
interface and precise timing mechanisms most of the time, 
which can significantly reduce energy use. Whenever the 
wearables need to send data to mobile phones, they will 
advertise a broadcast message consisting of a header including 
the device address plus a small data payload. The device can 
use the payload space to send data without a connection, 
which is in compliance with the BLE protocol [20]. 

Consider the application described in Section 3.1.  The 
mobile phone and wearable perform activity recognition 
collaboratively. Without connectionless communication, the 
wearable device must maintain a connection with the mobile 
phone, requiring at least 4.73 µA current on average (using the 
maximum 4 second connection interval). With connectionless 
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Figure 2.4: Compressed sensing of running cadence. Original signal (top left), its DCT coefficients
(top right), and its compressed reconstruction compared to the original signal (bottom).

quaternion energy in Figure 2.3. Computing quaternions on the device takes 550µA. Performing

compressive sensing takes less than 5% of the CPU time [18], i.e., 250µA, and sending 20% data to

smartphone for quaternion sensor fusion takes 40µA. Overall, compressive sensing reduces device

power use by 47%.

2.4.4 Connectionless Communication

The average connection current in Figure 2.5 shows that the energy efficiency of BLE is

constrained by the maintenance of connectivity status, for which the device needs to periodically

send beacons to the mobile phone, requiring a precise synchronization timing background current.

Wearable communication is generally outgoing, only. Often, wearables operate in a standalone

mode. Therefore, maintaining the connectivity between wearables and mobile phones is often

not needed. Connectionless communication aims to eliminate such unnecessary energy overhead.

Specifically, mobile phones and wearables do not maintain a wireless connection. Instead, wearables

stay offline and shut down the BLE interface and precise timing mechanisms most of the time, which

can significantly reduce energy use. Whenever the wearables need to send data to mobile phones,
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sparsely represented signal, then using the sensing matrix we 
get the compressed signal for wireless transmission. As seen 
in Fig. 4, the compression ratio can achieve 80% while still 
achieving high cadence detection accuracy. Then, the device 
only needs to send 20% of the original samples to the mobile 
phone. SNR is relatively low (3.48), but cadence is still 
robustly detectable with reduced processing and 
communication energy. 

Fig. 4. Compressed sensing of running cadence. Original signal (top 
left), its DCT coefficients (top right), and its compressed 
reconstruction compared to the original signal (bottom). 
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Performing compressive sensing takes less than 5% of the 
CPU time [17], i.e., 250 µA, and sending 20% data to 
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supported by most mobile phone platforms. The current 
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are shown in Table II. These events are brief opportunities to 
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interval time can range from 20 ms or more when advertising 
(a form of connectionless broadcast) and can range from 7.5 
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can also be selectively enabled and disabled, further extending 
the sleep interval. During a connection event, up to six packets 
containing 20 bytes each can be transmitted in both directions, 
i.e., from peripheral (slave) to central (master) or vice versa. 
Assuming a 40-byte duplex packet is sent once every four 
seconds, sleeping for more than 99.9% of the time is possible, 
but a precision timer must continuously run. Fig. 5 plots the 
relationship between sleep interval lengths between 
connection and advertising events and the resulting average 
current. Background current to keep a BLE connection active 
is significant over the life of a wearable, and that average 
current can be further reduced using BLE advertising alone. 

TABLE II  
Bluetooth LE advertising event and connection event current. 
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    The average connection current in Fig. 5 shows that the 
energy efficiency of BLE is constrained by the maintenance of 
connectivity status, for which the device needs to periodically 
send beacons to the mobile phone, requiring a precise 
synchronization timing background current. Wearable 
communication is generally outgoing, only. Often, wearables 
operate in a standalone mode. Therefore, maintaining the 
connectivity between wearables and mobile phones is often 
not needed. Connectionless communication aims to eliminate 
such unnecessary energy overhead. Specifically, mobile 
phones and wearables do not maintain a wireless connection. 
Instead, wearables stay offline and shut down the BLE 
interface and precise timing mechanisms most of the time, 
which can significantly reduce energy use. Whenever the 
wearables need to send data to mobile phones, they will 
advertise a broadcast message consisting of a header including 
the device address plus a small data payload. The device can 
use the payload space to send data without a connection, 
which is in compliance with the BLE protocol [20]. 

Consider the application described in Section 3.1.  The 
mobile phone and wearable perform activity recognition 
collaboratively. Without connectionless communication, the 
wearable device must maintain a connection with the mobile 
phone, requiring at least 4.73 µA current on average (using the 
maximum 4 second connection interval). With connectionless 
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Figure 2.5: Average current of the supported intervals Bluetooth LE connections and advertising
events. Connection events using from one to six packets per event are shown. The grey area
indicates background current required to keep a connection active.

they will advertise a broadcast message consisting of a header including the device address plus

a small data payload. The device can use the payload space to send data without a connection,

which is in compliance with the BLE protocol [20].

Consider the application described in Section 2.3.1. The mobile phone and wearable perform

activity recognition collaboratively. Without connectionless communication, the wearable device

must maintain a connection with the mobile phone, requiring at least 4.73µA current on aver-

age (using the maximum 4 second connection interval). With connectionless communication, the

average current drops to 333 nA, an energy savings of 93%.

2.4.5 Summary

In the past sections, techniques were proposed to reduce the energy consumption of the

wearable device. The energy expenditures and resulting system lifetimes for all the techniques are

summarized in Figure 2.6. The example wearable application used for our analysis is the combined

running gait and daily activity monitoring application from Section 2.4.1. A näıve starting point
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communication, the average current drops to 333 nA, an 
energy savings of 93%.  

 
Fig. 6. Energy profiles of the target wearable running 
application in terms of mAh per day and CR2032 lifetime for 
both standard and proposed energy saving techniques. 
 

3.4 Summary 
In the past sections, techniques were proposed to reduce the 

energy consumption of the wearable device. The energy 
expenditures and resulting system lifetimes for all the 
techniques are summarized in Fig. 6. The example wearable 
application used for our analysis is the combined running gait 
and daily activity monitoring application from Section 3.1.1. 
A naïve starting point assumes the gyroscope and 
accelerometer are operating at multiple kilohertz, performing 
filtering and quaternion operations before sending fused data 
to the mobile phone, which are in continuous communication. 
Only 2 days of lifetime are supported from a CR2032. 
Standard optimizations are applied next, which are those 
likely found in today's wearables. Taken together they provide 
96% improvement over the naïve case, and 48 days lifetime. 
Applying this case to the 60 mAh capacity of the wearable 
product in Section 2, the lifetime increases to 51 days. Next, 
collaborative sensing is used to offload activity monitoring to 
the mobile phone, boosting lifetime to 108 days. Collaborative 
processing improves filtering operations and offloads data 
fusion processing, yielding a lifetime of 352 days. 
Compressive sensing removes the need for filtering and 
reduces data sent over BLE by 80%, supporting a lifetime of 
407 days. Lastly, connectionless communication removes the 
continual overhead needed for maintaining a connection, 
however the wearable device and mobile phone are still able 
to communicate with an increase in latency tolerable to the 
application. This final stage of optimization supports a 
lifetime of over 1 year, 500 days, from a single CR2032 
battery—a 90% improvement over the standard set of 
optimizations. 

IV Conclusions 
Aggressive technology scaling fosters the fast-growing 

wearable technology market, which hold the promises of 
delivering ubiquitous and pervasive services. However, the 
future success of wearables has been hindered by the pressing 
energy consumption challenge. Orders of magnitude energy 
reduction are needed in sensing, analysis, and wireless 
communication.  This article has analyzed the energy 
challenges faced by wearables and evaluated the potential 
benefits of a variety of energy optimization techniques. 
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Figure 2.6: Energy profiles of the target wearable running application in terms of mAh per day
and CR2032 lifetime for both standard and proposed energy saving techniques.

assumes the gyroscope and accelerometer are operating at multiple kilohertz, performing filtering

and quaternion operations before sending fused data to the mobile phone, which are in continuous

communication. Only 2 days of lifetime are supported from a CR2032. Standard optimizations are

applied next, which are those likely found in today’s wearables. Taken together they provide 96%

improvement over the näıve case, and 48 days lifetime. Applying this case to the 60 mAh capacity of

the wearable product in Section 2.2, the lifetime increases to 51 days. Next, collaborative sensing is

used to offload activity monitoring to the mobile phone, boosting lifetime to 108 days. Collaborative

processing improves filtering operations and offloads data fusion processing, yielding a lifetime of

352 days. Compressive sensing removes the need for filtering and reduces data sent over BLE by

80%, supporting a lifetime of 407 days. Lastly, connectionless communication removes the continual

overhead needed for maintaining a connection, however the wearable device and mobile phone are

still able to communicate with an increase in latency tolerable to the application. This final stage

of optimization supports a lifetime of over 1 year, 500 days, from a single CR2032 battery – a 90%

improvement over the standard set of optimizations.



23

2.5 Chapter Summary

Aggressive technology scaling fosters the fast-growing wearable technology market, which

hold the promises of delivering ubiquitous and pervasive services. However, the future success of

wearables has been hindered by the pressing energy consumption challenge. Orders of magnitude

energy reduction are needed in sensing, analysis, and wireless communication. This chapter has

analyzed the energy challenges faced by wearables and evaluated the potential benefits of a variety

of energy optimization techniques.



Chapter 3

Low-Power Algorithm Design for Heterogeneous Cloud Architectures

The mainstream hierarchical design methodology of modern VLSI CAD is to separate the

design flow into a sequence of design optimization steps ranging in abstraction from system-level

design exploration down to the physical design. Reusing prior work reduces the complexity of

each design step, and abstraction makes early-stage design optimization feasible without being

overwhelmed by the low-level design details. However, with the increasing role of physical effects

such as interconnects, process variation, and power and thermal profiles in the final design’s cost,

this separation between layers makes the overall CAD process more difficult and error prone.

Primarily, this is because the physical effects can only be obtained accurately after performing the

physical design. Without knowing physical information during the early design stages, inaccurate

or even incorrect decisions are often made early on with irreversible impact during the rest of the

IC design process. Iterations of the entire design flow are therefore required to meet design closure

and thus the overall process wastes energy, and is expensive, resulting in serious design closure

failings, increased time to market, and increased IC cost.

3.1 Related Work

To solve the design closure problem, accurate physical information must be obtained to

guide the high-level synthesis process [21]. While unifying the high- and physical-levels has shown

promise, it has suffered from extreme computational complexities incurred when calculating the

physical ramifications of each potential high-level move. One major merit of a unified framework
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is that it iteratively improves the overall design quality by using incremental algorithms for high-

level synthesis and floorplanning. Incremental improvements are based on previous results; so, it

is much easier for these algorithms to maintain optimization continuity and data locality. How-

ever, since the low-level physical information such as wire length and power consumption must

be taken into consideration for every candidate high-level move, the design space to be explored

by each iterative improvement stage is huge. By our own study, the computational requirement

of searching this space heavily dominates the high-level optimizations, needing over 93 percent of

total execution time. Thus, even when incremental adjustment is applied the computational cost

is still prohibitively high.

To make practical the idea of unifying layers of the CAD process, available parallelism within

each design layer must be identified, extracted, and mated to a suitable compute architecture. With

the recent trend toward parallel computing driven by the emergence of powerful multi-/many-core

microprocessors and the supporting parallel programming environments, parallel CAD research has

been rejuvenated. In [22], a parallel-moves placement strategy was pipelined, with each pipeline

stage occupying its own processing core. Recent studies leveraging the emerging many-core GPU

with NVIDIA’s CUDA platform [23] have focused on CAD problems that are inherently data

parallel [24, 25, 26, 27, 28, 29]. For example, in [30], a well known analytical cell placer [31] was

paralleled on a many-core GPU, exploiting high data parallelism. In [32], the high-level global

placement layer of a multi-level analytical placer [33] was again accelerated through a GPU co-

processor.

Though most of the studies provide significant speedup, they bear the following two con-

straints. First, these studies target only a single layer in the design space for parallelization.

Secondly, their solution is formed for one specific architecture, namely either multicore CPU or the

GPU, to exploit parallelism in accelerating a pre-existing flow. Further, these recent studies have

shown little success for CAD problems with complicated control characteristics, and none of these

recent studies consider cross-layer optimization of the IC design automation flow. This absence in

the literature can be attributed to the complexities of the heterogeneous control, data parallelism,
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and communication characteristics required for a cross-layer parallel optimization approach.

For the first time, we introduce parallel cross-layer optimization for unified high-level and

physical synthesis. The major contributions of this work include:

• This is the first work for parallel cross-layer optimization. Though we use unified high-level

and physical synthesis as our case study, our parallel flow can be applied to other multi-level

flows.

• We leverage the parallel computational power from both the CPU and GPU, and we fit

them to meet the heterogeneous computational requirements across the design layers.

• We take advantage of unique conditions present in our parallel cross-layer flow, and fur-

ther optimize the traditional simulated annealing floorplanning approach to achieve a 24%

speedup without sacrificing quality of results.

• We apply high- and physical-level synthesis to the parallel cross-layer optimization tech-

nique and show on average 11X speed-up compared to state-of-the-art work.

The rest of the chapter is organized as follows. In Section 3.2, we introduce parallel cross-

layer optimization with the nondeterministic transactional model and discuss its application in

combined high-level and physical level synthesis. Section 3.3 describes how to apply our parallel

cross-layer optimization algorithm to a heterogeneous computing system, Section 3.4 introduces

our novel massively parallel GPU floorplanner, and in Section 3.5 we demonstrate the experimental

result. Finally, Section 3.6 concludes our work.

3.2 Parallel Cross-Layer Optimization

In this work, we deliver a parallel algorithm solution for cross-layer power optimization of

unified high-level and physical synthesis using a nondeterministic transactional model. Through

the cross-layer optimization framework, we globally optimize the decisions made in the individual

layers to produce an IC holistically minimized for power. We investigate how to uniformly specify
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parallel high-level and physical-synthesis algorithms, how to design cross-layer interaction and

optimization between high-level and physical synthesis, and how to expose the intra-layer and

cross-layer parallelisms to speed up the overall optimization flow.

We adapt the framework of [34] to the idea of parallel high-level and physical-level synthesis.

The input to the cross-layer optimization algorithm is a CDFG G, an input arrival (and output

sampling) period Ts, and a library L of function units (FUs) for data-path implementation. With

the given input, it explores the design space by doing an incremental search from initial solutions

of each different combination of candidate supply voltages and control steps. Upon completion, it

produces an RTL circuit whose total power consumption and estimated area are optimized.

Our algorithm starts by generating a candidate set P of valid combination of supply voltages

and control steps. ∀p ∈ P , we store a synthesized data path and physical solution, a corresponding

weighted cost considering power consumption and area, and the current supply voltage and control

step. These properties are denoted as p.sol, p.cost, p.voltage and p.cstep. Additionally, we add a

control flag p.flag to each solution to monitor the progress of the algorithm. The algorithm initial-

izes the solution with a fully-paralleled assignment with the fastest available FU from the library

that implements each operation. An as-soon-as-possible (ASAP) schedule is then generated for the

initial solution to determine whether it meets its timing requirements. Starting from this family of

initial solutions, an iterative improvement phase attempts to improve each candidate architecture

by reducing the switched capacitance, while still satisfying the sample period constraints. In each

iteration of the improvement phase, a high-level test movement is generated. To measure its impact

at the physical level, a floorplan for the modified HLS solution is generated, and lower-level physical

information such as area, wire length, and wire capacitance is evaluated. The quality of the current

HLS solution is then evaluated with the updated physical information. If the test solution is better,

it will be kept. Such incremental exploration is performed for each supply-voltage and control-step

configuration combination.

Notice that the order of examining supply voltage and control step pairs (Vdd, Cs) is not

important, as long as all the pairs are explored. In order to explore the parallelism and communi-
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Generate and initialize P and set best as φ
do
∃p ∈ P : p.flag = SY N → Try generate HLS movement for p.

if succeeded
Update p.sol and p.flag := PHY

else
p.flag := BRK

fi
∃p ∈ P : p.flag = PHY
→ Do floorplan for p, update p.sol and set p.flag := EV L
∃p ∈ P : p.flag = EV L → Update the cost p.cost

if p.cost improved
p.flag := SY N

else
p.flag := BRK

fi
od
Output p with the lowest cost in P as best

Figure 3.1: Nondeterministic transactional algorithm for unified high-level and physical synthesis.

cation characteristics across high-level and physical layers in the cross-layer optimization algorithm,

we leverage the mechanism of the nondeterministic transactional model. In the nondeterministic

transactional model, an algorithm is specified as an initialization followed by a loop of guarded

commands. A guarded command is composed of a boolean condition, called the guard, and an as-

signment. When a guard is true, the corresponding assignment can be executed. If multiple guards

are true, one or more commands can be arbitrarily selected for execution. Parallelism is exposed,

and heterogeneity is encouraged. Selection repeats until none of the guards are true, whereby the

algorithm produces the result. Such a model was adopted by [35] in developing a parallel min-cost

flow solver.

Leveraging the nondeterministic transactional model, the proposed parallel high- and physical

synthesis algorithm is expressed in Figure 3.1. Figure 3.1 consists of an initialization and a loop of

three groups of guarded commands.

The initialization generates the initial solutions for p ∈ P and assesses their costs. After the
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initialization phase, the algorithm enters the do-loop and executes until all the guarded commands

become invalid. The do-loop is the main body of our algorithm corresponding to the iterative-

improvement phase. In Figure 3.1, there are three groups of guarded commands, with execution

conditional on the set flag for each p ∈ P . These guarded-command groups are HLS-movement

generation, floorplan generation, and cost evaluation. Notice that, in each group of guarded com-

mands, there are |P | commands, where |P | is the cardinality of valid voltage-supply and control-step

pairs. The first group of commands generate incremental HLS moves based on the current p.sol.

Such moves include module rebinding, resource sharing/splitting, followed by rescheduling in order

to meet the timing constraint.

The second group of guarded commands carries out physical synthesis based on the updated

data path for p to accurately evaluate the power consumption due to the test HLS move. In

our current algorithm, floorplanning is performed for physical synthesis; which determines the

specific physical location of, shape of, and interconnect between, the actual hardware functional

units in a composed data path. Notice that for each configuration p ∈ P , our flow generates

the corresponding floorplan and then updates p.sol. With the physical synthesis done and the

physical information now known, the algorithm returns to the high-level and activates the third

group of guarded commands. These commands now accurately evaluate the power consumption of

the configuration p. If the cost was improved due to the combined HLS move and updated physical

layout, its flag is set as SY N , indicating that further improvement is possible. Otherwise, its flag

is set as BRK, indicating that no further incremental improvement attempt on the specific p is

needed.

The algorithm terminates when all the flags for P are set to BRK, which indicates that no

better solution is found or the number of HLS movements has reached the user-defined threshold.

On exit, our algorithm outputs the lowest cost configuration among P as the best, which is our

decided upon result.

Our unified high-level and physical-level synthesis algorithm in Figure 3.1 demonstrates and

leverages the three benefits of the nondeterministic transactional model. Firstly, the second group
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of guarded commands correspond to the floorplanning action, which can be further specified using

finer guarded commands. The abstraction and composability of guarded commands helps us to

more clearly specify the cross-layer algorithm. Secondly, the commands on the physical layer

interact with the high-level synthesis commands through examining p.flag in their guards. Fusion of

optimizations across both high-level and physical layers is attained, which is the primary tenet of our

parallel cross-layer optimization technique. Finally, abundant parallelism is exposed in Figure 3.1.

At first look, commands are interdependent on p.flag. However, when we expand the group of

guarded commands, we find that each command in the group can be executed independently, since

commands treat each (Vdd, Cs) pair individually. The nondeterministic transactional model tells

us that we can execute any of the transactional commands arbitrarily as long as the guards are

satisfied. Due to the data isolation of each p ∈ P , the commands in each group can be executed

in parallel. In summary, |P | parallelism is available in our algorithm, where |P | is the number of

valid (Vdd, Cs) configuration pairs. In our experiments, |P | is often on the order of 1000 and higher,

depending on the benchmark, which suits extremely well to a multi-core/many-core architecture

as we will see in the following section.

3.3 Mapping of Unified Cross-Layer Optimization to Heterogeneous Archi-

tectures

In this section, we discuss how the parallel cross-layer optimization technique is applied to

a heterogeneous computing system, which is composed of a multicore CPU and multiple high-

performance Nvidia GPUs. We will discuss in detail the appropriate programming considerations

encountered and their corresponding performance tradeoffs.

3.3.1 Overall Framework

When implementing the high-level and physical level synthesis algorithm described in Fig-

ure 3.1, we need to partition the three groups of guarded commands in between the CPU and the

GPUs in order to best utilize the heterogeneous computing system. The first and third groups of
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commands, which correspond to the HLS operations, are mapped to CPU threads so as to facil-

itate high-performance sequential execution. The second group of commands, which corresponds

to the physical synthesis, is mapped to the four GPUs for issuing as bulk CUDA kernels. Such

partitioning is done mainly for three reasons. First, we cannot decouple a HLS move from its

successor or predecessor move for parallelization due to the obvious dependency; but, we can al-

ternatively serially generate many candidate (Vdd, Cs) configurations of the same move iteration,

and concurrently evaluate the cost for each on a highly data-parallel GPU architecture. Second,

serial dependencies and high control complexity in the HLS mates best with a sequential device

that leverages deep pipelines, high instruction-level parallelism, and high instructions-per-second

throughput. Moreover, the computational cost of these HLS operations takes only a small portion

of the whole algorithm flow, so there is not much advantage in attempting parallel execution. Third,

floorplanning operations are composed of many finely-grained and independent data manipulations;

as such we are free to floorplan all HLS configurations concurrently, which mates extremely well

with a high-throughput and data-parallel architecture like the GPU.

With the guarded commands appropriated to the most suitable architectures, we can more

closely examine the algorithms defined by them. We implement the loop body of Figure 3.1

with an iterative improvement structure. The control flow of high-level and physical synthesis

in one iterative improvement iteration is shown in Figure 3.2. For each iteration, we address every

(Vdd, Cs), i.e. p, configuration in P . For a single configuration p, we first generate a high-level

incremental movement by rebinding, merging or splitting the functional module. Rescheduling is

then carried out for current p to meet the timing requirement. The high-level RTL changes are

recorded and the module and connectivity information is updated for physical design. After high-

level movements are generated for each configuration p ∈ P , their physical information is updated

all together by launching a floorplanning kernel on the GPU. Leveraging the massive number of

cores in GPU, we can produce the floorplan for all |P | configurations concurrently. The detail of

the GPU floorplanning kernel will be described in Sections 3.3.3 and 3.4. After the floorplan and

the associated physical information is updated by the GPU, we retrieve the physical information
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Figure 3.2: Control flow sequences of high-level synthesis (HLS) and physical design.

to send to the CPU. The power cost function for each configuration is then updated one by one.

With the new cost, we can decide whether configuration p gains improvement or not, which is the

last step in the current iteration. This process is carried out repeatedly until no more improvement

can be achieved in all configurations.

3.3.2 Parallel Control and Communication Characteristics

From system-level design exploration to physical synthesis, parallel CAD algorithms targeting

different IC-design optimization layers exhibit distinct run-time behaviors, e.g. unique computation
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and communication characteristics. We now focus on how to best satisfy communication between

layers, or equivalently, their synchronization.

In this work, we perform HLS and physical synthesis together in a single heterogeneous

system, e.g. a CPU with GPU co-processor, with communication occurring across the system

PCI-express bus. The bottleneck of the communication is the data transfer rate between the CPU

and the GPU. Additional overhead from the GPU is also incurred from each GPU kernel launch.

Our task is then to minimize transfer frequency, and maximize data transfer size. We do this by

organizing the data of a CPU/GPU transaction to be large enough to overcome these overheads,

but not so large as to stall either CPU or GPU computation. To this end, we coalesce small frequent

communications into larger and more infrequent ones, and in doing so we pipeline communication

with computation in both the CPU and GPU. The CPU iteratively generates and buffers candidate

configurations intended for GPU physical design and cost evaluation, as they are too small to

efficiently transfer alone. When enough data path candidates have been generated to make the PCI-

express transaction profitable, a GPU kernel is launched. Meanwhile, the CPU generates further

candidate configurations while the GPU performs the physical evaluation layer. Due to the hard

architectural constraint of the PCI-express bus, even with our best efforts we are forced to tolerate

some imbalance in execution times between the CPU and GPU. In the terms of our nondeterministic

transaction framework outlined in Section 3.2, high-level guarded command groups one and three

communicate with group two physical-level commands by exchanging module type and connection

information from the CPU and physical information from the GPU. Because we only issue the data

for the GPU only once per HLS optimization iteration, communication granularity between layers

is effectively coarsened, the number of GPU kernel launches are minimized, and computation can

be overlapped with communication.

3.3.3 GPU-Driven Physical Design

For our algorithm in Figure 3.1, we bind each of the guarded commands in the third group to a

computing thread of the GPU. Many threads are then batch executed in GPU kernels. Concurrently,
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(a) MAC benchmark

(b) RANDOM100 benchmark

Figure 3.3: Cost improvement values seen throughout the floorplanning of all (Vdd, Cs) configura-
tions at a single iterative improvement phase.

each GPU thread in a kernel derives the floorplan for its candidate (Vdd, Cs) configuration and

further evaluates the physical information from the floorplan such as total area and wire length.
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Since there can be thousands of configurations, and the GPU has hundreds of cores, multiple

configurations are mapped to a single core in the GPU to be alternatively executed in groups of

threads that in CUDA are called warps. Warps dictate the thread granularity at which the GPU

hardware thread manager issues instructions, and they are sized to groupings of 32 threads in most

recent Nvidia devices. In this way, we can make the maximum use of every computing core of the

GPU; keeping them busy. We use simulated annealing (SA) for our floorplanner, as it is the most

popular approach used in the floorplanning physical design stage [36, 37, 38, 39]. Sequence pairs

are used to represent the configuration of the floorplan because they can be organized as arrays in

GPU memory, which is an appropriate data access pattern for GPU. Similarly, the module block

and net information for each (Vdd, Cs) configuration is also stored as arrays in the GPU global

memory, due to their size. In order to facilitate SA move generation, a method of randomization is

needed. Currently, the CUDA programming model does not support efficient on-the-fly random-

number generation during the kernel execution. Therefore, an array of random values is generated

by the CPU and preloaded along with the data path information into the GPU memory, which is

then subdivided for exclusive use in individual threads. After floorplanning is complete, the GPU

kernel calculates a final cost describing power usage due to interconnect length and overall area

of the circuit, for each of the configurations. All configuration results are stored in an array and

passed back to the host CPU, which, now aware of the effects of every HLS move, can select the

lowest-power result.

3.3.4 Multicore and Multi-GPU Implementation

With the techniques introduced by the previous subsections, the parallel high-level and phys-

ical synthesis flow has been completely specified. However, we can leverage the multicore CPU and

multiple GPU cards available to further speed up the algorithm without compromising the quality

of the result.

Using the multithreading mechanism, we create several threads and partition the three groups

of guarded commands in Figure 3.1 according to the candidate configurations as P = {P1, . . . , Pk}.
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Here k is the number of threads created. Each thread i is in charge of its own partition of candidate

configurations Pi. Since there is no data dependency between each individual configurations, the

guarded commands for high-level moves can be executed in parallel across the threads. More

importantly, since the CUDA programming model requires that each GPU processor in use be

controlled through a unique CPU thread identification, multithreading in the CPU allows for the

employment of multiple GPU cards for parallel floorplanning. As is previously mentioned, the

number of valid (Vdd, Cs) configurations |P | is usually on the order of a thousand while the number

of cores that a GPU contains is on the order of a hundred. It is desirable that multiple GPUs

are leveraged to make full use of the abundant parallelism in concurrent floorplan evaluation of

|P | configurations. For example, in our implementation, through four computing threads in the

multicore CPU, we can drive four Tesla C1060 GPUs – by which we leverage up to 960 computing

cores in total for floorplanning on the (Vdd, Cs) configuration set. With the exception that each

thread now works on its own partition Pi instead of the whole configuration set P , the program

flow for each thread is identical as that in Figure 3.2.

3.4 Massively-Parallel Physical Design on GPUs

In this section, we propose a novel massively-parallel GPU floorplanner. In floorplanning,

optimization attempts halt when further randomized moves begin to show little to no cost improve-

ment, i.e., convergence occurs. As an example, Figures 3.3(a) and 3.3(b) show this convergence

point occurring at roughly 600 and 1500 iterations respectively; i.e. when the improvement curves

begin to flatten. To exploit massive GPU parallelism, this work concurrently floorplans up to

thousands of (Vdd, Cs) configurations, using one GPU thread per floorplan. Due to the atomicity

of the GPU kernel, an already converged GPU thread must wait for all other GPU threads in the

kernel to converge before transferring results to the CPU. Early converging GPU threads must

wait, attaining poor result improvement per cycle spent during this time. Late converging GPU

threads add little overall benefit to the GPU kernel, while blocking converged threads from sharing

results with the CPU. To address the above observations, we introduce a method to dynamically
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Figure 3.4: Number of iterations needed to pass our two-level test for floorplan convergence for
all 1,155 (Vdd, Cs) configurations at a single iterative improvement phase for the MAC benchmark.
The vertical line indicates the global termination signal.

decide the global (kernel) termination of floorplan optimizations, utilizing local convergence test

results of the individual GPU threads. The algorithm for local and global tests for convergence per

GPU thread is shown in Figure 3.5, and is further detailed in the following two paragraphs.

Our approach to determine local convergence for a single GPU thread is as follows. The

local test for convergence is defined by two levels. The first level is satisfied when most moves

stop yielding an improved cost. The most recent 60 moves are examined, and if 5 percent or less

improve the cost, the second level test is activated. The second level examines the magnitude

of the benefit of move improvements, and compares these against the most profitable move ever

encountered. If all improved moves have 10 percent or less of the maximum profit ever encountered,

both levels are satisfied and the local test for convergence is passed. The converged GPU thread

then atomically increments a counter stored in the GPU global memory. This shared variable will

be further explained in the paragraph below. Local test threshold values were determined from

empirical profiling of the benchmark suite. Larger history lengths were found to improve accuracy,

but increased memory usage and computing time.
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We now explain our approach to determine global convergence for a GPU kernel. Before a

round of floorplanning on the GPU, each (Vdd, Cs) configuration in a GPU kernel has completed

an equal number of high-level perturbations and so has a similar CDFG structure. Therefore the

majority of GPU threads converge relatively close in time to one another, with a much smaller

percentage being latent outliers. This is evidenced by Figure 3.4, where a convergence distribution

of the MAC benchmark can be seen. Figure 3.4 shows that the majority of MAC configurations meet

the local convergence test within the same 150 iteration period (between 350 and 500 iterations).

The vertical line dividing columns in Figure 3.4 indicates when 90 percent of MAC configurations

have met our local convergence test. Other benchmarks showed similar distributions as MAC.

Once a GPU thread has converged, it continues to optimize the floorplan until the GPU kernel

is globally terminated. Doing so ensures that all GPU resources are in use for the entirety of the

GPU kernel lifetime. In Figure 3.4 the MAC benchmark passes the global test in roughly 600

iterations. When the shared counter in global memory reaches 90 percent of |P |, the GPU kernel

is globally terminated. Stopping here is advantageous because the remaining configurations likely

would have yielded little improvement while adding a great expense. The lack of degradation in

our results, shown by Table 3.1, supports this assertion. Through testing of combined local and

global influences, subtle design relationships affecting convergence can be successfully accounted

for, as well as maximizing use of GPU compute power.

3.5 Experimental Results

In this section, we present the results of the parallel high-level and physical level synthesis,

as described in the previous sections. The whole program framework follows that of [34]. We

implemented both a sequential version and the proposed parallel version in the C++ programming

language and CUDA SDK [23], and will compare their running time and performance. We further

evaluate the proposed GPU floorplanner with local and global convergence test against a traditional

SA GPU floorplanner. Both GPU floorplanners leverage our parallel cross-layer optimization tech-

nique. As this work is the first to perform parallel cross-layer optimization, we cannot compare
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if threadIdx = 0
countSHARED := 0

fi
moveBEST , f lagCONV :=∞, false
do

generate floorplan move and evaluate its cost moveCOST

if flagCONV = false
HISTORY ← move
if moveCOST < moveBEST

moveBEST := moveCOST

fi
∀moves ∈ HISTORY ∧moveCOST < 0
IMPRV ← move

if |IMPRV | ≤ 5%× |HISTORY |
∀moves ∈ IMPRV ∧moveCOST ≤ 10%×moveBEST

countSHARED := countSHARED + 1
flagCONV := true

fi
fi
if countSHARED ≥ 90%× |P |

return
fi

od

Figure 3.5: CUDA GPU floorplan algorithm to test for local GPU thread and global GPU kernel
convergence.

with other prior GPU implementations in this area.

The experiments are conducted on a Linux workstation with an Intel quad-core Nehalem

2.13GHz processor and 4GB of memory. Our workstation also contains four Nvidia Tesla C1060

cards for the GPU experiments. Both the sequential and parallel programs are run with the same

set of benchmarks introduced in [34]. The boundary constraint for data paths is set as 1.8 times

the fastest clock period achievable. The voltage supply space is searched from 1V to 5V with the

increment of 0.1V , as is suggested in [21]. For both programs, the number of passes of incremental

improvement for each configuration p is set as 50.

First, we examine the quality and efficiency of the proposed massively parallel GPU floor-

planner. Table 3.1 shows the speed-up and quality comparisons for our parallel GPU floorplanner
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Table 3.1: GPU Floorplanning: Traditional SA vs. Proposed GPU SA

Benchmark
Traditional SA Proposed GPU SA Improvement

Time (s)
Average

Energy (pJ)
Time

Average
Energy

Speedup Energy (%)

MAC 17.84 2214.56 15.75 2215.20 1.13X 100.02

IIR77 67.10 3422.75 51.63 3433.46 1.29X 100.31

ELLIPTIC 32.52 2837.97 26.60 2847.84 1.22X 100.34

PAULIN 20.58 1242.33 19.61 1241.98 1.04X 99.97

PR1 51.93 2693.80 42.43 2708.64 1.22X 100.55

PR2 83.64 4029.71 63.11 4019.39 1.32X 99.74

DCT IJPEG 53.64 2925.21 41.39 2916.09 1.29X 99.69

DCT DIF 58.78 2222.45 47.54 2219.13 1.23X 99.85

CHEMICAL 35.21 2592.33 29.16 2593.79 1.20X 100.06

WDF 75.17 2301.84 60.91 2304.28 1.23X 100.11

DCT WANG 83.45 1820.14 63.70 1837.53 1.31X 100.96

JACOBI SM 107.15 3646.65 78.85 3661.61 1.35X 100.41

DCT LEE 99.44 3061.91 78.84 3067.20 1.26X 100.17

RANDOM100 141.16 3715.22 107.78 3683.77 1.30X 99.15

Avg. 1.24X 100.09

Table 3.2: Difference of Result on Benchmarks

Benchmark
[34] GPU 1 Diff (%) GPU 2 Diff (%) GPU 4 Diff (%)

Area
(mm2)

Power
(W )

Area Power Area Power Area Power

MAC 1.69 3.07 0.00 -1.14 0.59 2.00 0.00 0.65

IIR77 4.24 1.85 2.35 -0.51 -2.30 -0.46 -3.00 -0.56

ELLIPTIC 3.32 2.97 -0.30 0.16 -0.90 -0.16 -0.31 1.68

PAULIN 0.94 0.89 -1.21 -3.69 1.27 -1.80 -1.06 1.60

PR1 3.77 2.03 2.12 -0.62 -0.26 0.58 0.00 -1.90

PR2 5.58 2.05 0.00 1.46 -1.35 0.58 -0.35 0.07

DCT IJPEG 3.64 3.37 -1.92 0.98 -0.82 0.54 2.74 -0.51

DCT DIF 2.51 1.11 0.40 0.21 0.79 1.03 -0.55 -1.00

CHEMICAL 3.64 2.44 2.74 0.73 -0.82 0.17 0.53 -0.27

WDF 2.18 0.93 -0.27 0.07 -0.50 -0.31 -1.45 1.47

DCT WANG 4.26 1.03 -1.42 -0.47 0.95 -0.34 -0.58 0.12

JACOBI SM 5.03 1.73 -0.23 0.38 -0.20 1.21 0.13 0.35

DCT LEE 3.90 1.04 -1.36 0.85 0.79 -0.61 1.84 -0.50

RANDOM100 8.98 2.60 -0.77 -0.74 0.25 -0.67 0.79 -0.14

Avg. 3.83 1.94 0.01 -0.17 -0.18 0.13 -0.09 0.03
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against a traditional parallel SA floorplanner. In Table 3.1, we run a single iterative-improvement

phase ∀p ∈ P for each benchmark using both floorplanners and compare the results. The exper-

iments for Table 3.1 were run with a single Nvidia Tesla C1060 GPU. Since power is a function

of final circuit frequency, which is determined in the HLS, we report only the energy of the floor-

planned configurations. In order to encompass the effect of the proposed GPU floorplanning with

local and global convergence test over all the configuration pairs, we report the averaged energy

across for all the configurations in each benchmark. With the local and global convergence test

schemes, we see improved speed-up in all benchmarks, with comparably minimized energies in the

resulting floorplans. Our results show an average speed-up of nearly 25 percent with increased

energy of less than one tenth of 1 percent, indicating result quality is unaffected. These results

show our new scheme is able to successfully detect the appropriate stopping condition unique to

each benchmark, optimizing for maximized performance benefit with minimized increase in energy.

Next, we examine the performance of the whole parallel high- and physical-level cross-layer

power optimization algorithm, compared with the traditional sequential version. Tables 3.2 and 3.3

give the comparisons of the quality of synthesized designs and run-times between the sequential

program and our (multi-) GPU program. We first check the consistency of resulting quality of

our parallel algorithm. From Table 3.2, we can observe that the GPU-parallel programs achieve

indistinguishable design quality, in terms of total power and area, to the sequential version’s. This

is due to the fact that all the programs explore the same design space, and the algorithm for high-

level synthesis is identical. The tiny differences in Table 3.2 are induced by the non-determinacy

of the simulated annealing algorithm, e.g. for the same design, it is possible that the floorplanner

gives a slightly different result each time it is called.

After examining result consistency, we now analyze the performance of parallel cross-layer

optimization, as is listed in Table 3.3. Note that the run-time and speed-up listed in Table 3.3 are the

total time of the program, including sequential switching-activity simulation. The column labeled

with “#config” shows the number of valid (Vdd, Cs) configurations for the current benchmark. Since

our workstation has four GPU cards, we tested the performance of our parallel program using one
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Table 3.3: Run-Time Speed-Up on Different Benchmarks. (Time Unit: Second)

Benchmark |P | [34] GPU 1 GPU 2 GPU 4

Time Time Speedup Time Speedup Time Speedup

MAC 1155 377.43 194.95 1.94X 114.22 3.30X 75.91 4.97X

IIR77 2578 4711.19 1259.27 3.74X 685.16 6.88X 392.32 12.01X

ELLIPTIC 1264 1873.43 617.81 3.03X 382.46 4.90X 251.79 7.44X

PAULIN 1827 263.70 158.82 1.66X 85.60 3.08X 50.31 5.24X

PR1 2033 3900.44 1021.56 3.82X 550.37 7.09X 328.89 11.86X

PR2 2718 7248.53 1864.50 3.89X 1022.15 7.09X 580.87 12.48X

DCT IJPEG 1377 4131.89 1092.63 3.78X 617.93 6.69X 400.54 10.32X

DCT DIF 2818 3391.65 922.10 3.68X 488.64 6.94X 279.67 12.13X

CHEMICAL 1377 2062.77 631.88 3.26X 382.71 5.39X 269.28 7.66X

WDF 3557 4840.82 1379.58 3.51X 726.89 6.66X 395.78 12.23X

DCT WANG 2814 7400.68 1842.65 4.02X 988.22 7.49X 576.30 12.84X

JACOBI SM 2840 11584.48 2652.55 4.37X 1422.61 8.14X 811.72 14.27X

DCT LEE 4396 7405.26 1891.16 3.92X 992.69 7.46X 535.85 13.82X

RANDOM100 4803 14298.03 3360.62 4.25X 1171.42 8.07X 961.85 14.87X

Avg. 2540 11807.34 2951.36 3.53X 1152.32 6.47X 862.08 11.13X

to four cards, the results of which are indicated in Table 3.3 as columns “GPU 1” to “GPU 4”. The

single GPU program achieves average speed-up of 3.53X over the CPU version. Although a GPU

has a great number of cores (Tesla C1060 has 240 cores), the computational power of one GPU core

is far less powerful than that of the modern CPU processor. Furthermore, the memory access speed

of the CPU is much faster than that of the GPU. However, by leveraging the abundant parallelism

in the cross-layer optimization algorithm, the collective power of the many-core GPU overwhelms

that of the CPU, achieving better performance. This is indicated by the speed-up shown in our

multi-GPU program. As we observe from Table 3.3, near linear speed-up is achieved. For some

small benchmarks such as MAC and PAULIN, the speed-up is worse than the others, caused by

two major reasons. First, for these small cases, the sequential switching-activity simulation takes

a larger part in the whole program. Secondly, the number of valid (Vdd, Cs) configurations in these

cases is relatively smaller, which indicates limited parallelism and therefore limited potential for

performance increase. On average, a speed-up of 11.13X is achieved with four GPU cards.



43

3.6 Chapter Summary

In this work, we proposed and implemented the parallel cross-layer optimization technique

across high-level and physical syntheses. We derived our optimization framework using the nonde-

terministic transactional model with UNITY. Leveraging the heterogeneous parallel-computational

power in current multi-/many-core processors, increased exploration of design space was achieved

with our experiments showing an 11X average speedup while delivering comparable results. We

developed a massively-parallel GPU floorplanner, which showed a 24% average speed-up over tradi-

tional SA-based GPU floorplanners. We believe that the proposed parallel cross-layer optimization

technique is a potential method for alleviating unacceptable compute complexities of the design

closure problem.



Chapter 4

Mobile and Cloud Based Human Localization to Support Augmented Reality

It has amply been noted that information technology can help catalyze a number of important

benefits in healthcare that include improving its quality and reducing its cost [40]. With the

emergence of sensor-rich, powerful smartphones that can provide a rich set of user contextual

information in realtime, it has now become feasible to provide effective and affordable healthcare

to nearly everyone via smartphones. In particular, carefully designed smartphone applications

have the potential to enable individuals to participate in their care, which transforms healthcare

systems from reactive to preventive, from clinic-centric to patient-centric, and from disease centered

to wellness centered.

This chapter explores the use of smartphones, cloud computing, mobile augmented reality and

related information technology to help improve societal health and wellness. Earlier research has

shown a strong link between poor dietary choices and the increased risk of poor health conditions

such as obesity as well as chronic diseases such as cardiovascular disease and diabetes. Poor

diet and physical inactivity are the two most important factors contributing to an epidemic of

overweight people and obesity in the United States. Improving one’s diet begins by improving the

nutritional quality of the food choices he/she makes. In a food supply including tens of thousands

of processed and packaged foods with diverse messaging on bags, boxes, bottles, jars and cans,

making more nutritious choices is challenging at best for the average consumer [41]. Consumers

claim to understand what is healthy and unhealthy, but acknowledge confusion over implementing

general nutritional advice into practice [42]. Providing consumers with nutrition information at the
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point-of-purchase has the potential to improve consumer decision-making about healthy foods, and

thus have a greater impact on dietary quality than traditional generic messages of “eat better”.

The use of technology in managing diets has been heralded as an effective tool and resource

in helping to reduce the prevalence of poor health conditions and improve the general wellness

of the public [43]. We propose to address the critical problem of improving the nutritional qual-

ity of the food choices individuals make by introducing mobile augmented reality (AR) at the

point-of-purchase in grocery stores. AR is one of the most exciting emerging technologies, and

in simple terms provides rich visual interaction with the real world by augmenting or overlaying

a camera’s view with computer-generated elements containing useful information relevant to the

objects shown in the camera’s video screen. With an AR-based smartphone application, a user can

enjoy an instantaneous interactive or context-rich experience. AR has recently achieved significant

mindshare as an exciting new technology for mobile smartphones. Examples include Golfscape GPS

Rangefinder, an augmented reality range finder for golf lovers [44]; DanKam, an AR application

for people suffering from color-blindness [45]; Google Sky Map, an AR application for amateur

astronomers [46]; Word Lens which translates a foreign language captured by the mobile camera

and overlays the result on top of the text [47]; and many more.

A prototype of our augmented reality mobile grocery shopping application is shown in Fig-

ure 4.1. As the user pans and walks up and down a grocery store aisle, the AR tags corresponding

to highlighted products will change based on what products the user is facing. As a user walks

towards an item along the aisle, its corresponding AR tag grows in size. The tags when clicked

reveal nutritional information about the product. The tags are also colored, e.g., green to indi-

cate products that are nutritionally preferable (e.g., low calorie, gluten-free), and red to indicate

products to avoid (e.g., high cholesterol or peanut content). Further, shoppers can specify health

profiles which may impact their food purchase choices, such as weight control, heart disease, food

allergies, etc. The recommended products shown via AR tags will then change depending on what

health condition/concern is indicated by the user. We believe our system is the first to integrate

augmented reality tagging and pedometry-based localization with a back-end server to provide
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Figure 4.1: A screenshot of our mobile application to assist in healthy grocery shopping. Augmented
reality color tags identify healthy and unhealthy products.

health-based grocery recommendations at the point-of-purchase. We evaluated the effectiveness of

our system in a real grocery store aisle with 15 actual grocery shopping subjects to determine how

easy and fast the subjects reported it was to locate healthy food products and avoid unhealthy

ones, using AR tagging with our application. We also evaluated our application’s functionality

and performance by analyzing data we collected from 104 online application demonstration/survey

participants.

4.1 Related Work

Augmented reality has been recently applied in the mobile health arena in a variety of appli-

cations. For example, AR tags are overlaid in a home environment to provide instructions to the

elderly for tasks like taking medication, cooking, washing, etc. [48]. TriggerHunter is an AR-based

game that overlays tags on potential asthma triggers in the local environment [49]. Neither project

contains any evaluation. An AR-based game has been developed for mobile phones to help indi-

viduals overcome insect phobias by allowing patients to kill virtual insects overlaid on the mobile

screen [50]. A framework for several AR-based Q&A games has been created to rehabilitate pa-
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tients [51]. An AR-based mobile game has been described that forces players to travel to various

physical sites to obtain AR-overlaid information, thus facilitating exercise [52].

Supermarkets are an excellent location to introduce informational [53, 54, 55, 56] and dietary

behavior [57, 58] interventions because they are the place where most individuals in the United

States make decisions and purchase their food products. An example of an informational interven-

tion is a system where participants take pictures of items, e.g., chips, which are then matched in an

image database to provide product information that is overlaid on the picture of the product [53].

This system requires shoppers to know exactly where the product is and still read the nutritional

label on the packaging.

To aid individuals locate the items they are looking for and provide a high level health

information about the products, visual guiding systems have been deployed in grocery stores and

supermarkets. To direct the individuals to the items of their interest, these systems work in a

hierarchical way, e.g. a large sign of a general category such as “Produce” or “Dairy” visible from a

distance followed by specific aisle signs about more specific item categories placed near the general

category sign. Lately, these systems have started providing general health related information

such as “Le Bio” or “Le Bonne” in Carrefour stores or “Organic” in Safeway stores. While these

visible guiding systems certainly help individuals in making healthy choices, a key limitation is that

they provide generic information and are not tailored for each individual based on his/her health

condition and other factors. We compare the performance of our AR-assisted mobile grocery app

with a visual guiding system in a real grocery store in Section 4.4.4.

Other informational interventions rely on shoppers stopping by a supermarket kiosk to receive

nutritional information [54, 55] and coupons to incentivize healthier choices [56]. Although these

systems did encourage participants to purchase healthier food, marginalized populations were less

likely to use the system. Ubiquitous grocery intervention systems are promising for dietary behavior

change because they are always with the shopper and can provide just-in-time information about

food items. For example, Mankoff et al. [58] designed a system where shoppers could scan their

receipts and receive information about the nutrition of the items. This system provides shoppers
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the ability to reflect on the food that makes-up their diet after purchasing the foods. Other point-

of-decision ubiquitous computing applications for grocery shopping describe ways to use LEDs to

inform the user either about nutrition through a small clip on stick [59] or about how many miles

the food traveled via a device clipped onto grocery carts [57]. Similar to other work discussed, these

systems require the user to know the location of the item and to select it to gain information about

the item. Our application makes real-time customized recommendations of healthy food items to

get and unhealthy (or harmful) food items to avoid, and AR-assisted color tags to facilitate healthy

food purchase decisions.

Recommender systems have been an area of active research for decades and many techniques

have been proposed (see [60] for a survey). A number of food recommendation techniques have also

been proposed recently, such as recipe recommendation [61], context-aware food recommendation

at table [62], and food recommendation for people with diabetes [63] or tourists with certain health

concerns [64]. In this work, we aim to recommend/warn shoppers of grocery items in the current

isle based on personal and family health profiles and grocery items’ nutritional information.

Pedometry-based navigation using accelerometer data from mobile phones provides a conve-

nient and low-cost way to monitor user progress up and down a grocery aisle without requiring

an extensive localization infrastructure. A variety of step estimation algorithms have been pro-

posed [65, 66, 67]. For our purpose of aisle navigation, we adapt a simple approach that achieves

sufficient accuracy using personalized pedometry by estimating individual stride length [68].

4.2 Application Design Overview

Our goal is to build an indoor mobile augmented reality system for healthy grocery shopping

by leveraging the sensing and AR capabilities of smartphones and the knowledge of health rules in

order to recommend appropriate products to purchase or identify products to avoid. We seek to

understand two basic questions:

• How much time does AR tagging of recommended products save a grocery shopper with
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a given health condition in comparison to the current approach of preparing a grocery

shopping list?

• Does highlighting unhealthy products help the user to reduce the time it takes to confirm

avoidance of items that would conflict with their health condition?

4.2.1 Design Requirements and Assumptions

Our system needs to be able to support navigation within a grocery store aisle. It needs

to provide AR-based tags that are geographically (i.e., shelf location along an aisle) associated

with recommended products, or products to avoid. The recommendation of healthy or unhealthy

products needs to be determined in real time. The system should measurably improve the shopping

experience of the health-motivated shopper, whether measured by the reduction in time to find their

desired products, or by an improved ability to avoid unhealthy products. The system should be

relatively easy to use and learn. Also, the system should leverage existing low-cost sensors on

most mobile devices, and not require a costly in-store infrastructure, such as an infrastructure for

localization.

Based on our discussions with local grocery stores, we find that grocery stores have an

electronic product database, though not necessarily associated with location. Note that we do not

require exact location of items on store shelves, but only approximate sectional information along

an aisle, quantized as shown in Figure 4.2. Given such a coordinate system, we can overlay tags

of healthy/unhealthy items coarsely by section, which should be sufficient for the user to find the

items quickly. We demonstrate that this coarse quantization is sufficient in our evaluation.

To better understand users’ grocery shopping behavior with respect to their food product

purchases, we conducted an online food-shopping demo and survey of 104 human subjects. This

research was approved by Institutional Review Board (IRB) [69]. The demo and survey consisted

of three steps that participants were required to complete:

(1) Participants find four healthy products of their choice, that had low calorie and no milk
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shelf aisle number: 1, aisle side: right, division num: 1,
shelf num: 2, item sequence num: 1

Figure 4.2: The coordinate system we use for item locations in a grocery store aisle.

content, from among 60 picture-based grocery products displayed on the website.

(2) Participants view a 3-minute video demo to familiarize themselves with our shopping app.

(3) Participants provide feedback, including an evaluation of the brief picture-based shopping

experience, an evaluation of the video demo, and a detailed feedback on their personal

grocery shopping behavior, focusing specifically on healthy food shopping.

We designed our online survey, using Google Docs’ online survey tool [70] and deployed it on

Amazon’s public Mechanical Turk website [71].

4.2.2 Users’ Grocery Shopping Behavior

4.2.2.1 Healthy food shopping behavior

We categorized participants into two groups: those who are more interested in buying healthy

food products and those who are less interested in buying such products. The reason to categorize

people into these two groups is because people who are interested in buying healthy food products
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Figure 4.3: Result of importance-rating for buying healthy food products (a) on a five-point scale,
(b) on a two-point scale from healthy food shopper to less-interested shopper.

are likely to be much more focused on healthy eating and ensuring that they can obtain healthy

food products frequently and easily. Our goal in making this distinction between these two groups

was to see if the shopping behaviors of the two groups were distinct from each other and how far

apart ratings of their shopping behavior patterns would actually be for these two groups. These

results can therefore help us to better understand all users’ grocery shopping behaviors and help

us to further evaluate and improve the use of our application. We asked the following question:

How important is it to you that you buy healthy products (e.g., low calorie, low sugar,

organic, etc.) for yourself and/or your family when you go grocery shopping?

We categorized the two groups as follows: healthy food shoppers – those who provided ratings

within the 4 to 5-point range (n=76, 73%); and less interested shoppers – those who provided

ratings in the 1 to 3-point range (n=28, 27%) as shown in Figure 4.3(b). We investigated three

different food grocery shopping behaviors for members of these two groups: pre-grocery store visit

searching behaviors for healthy food products; preferred methods searching for healthy products

in a grocery store; and food quality factors considered most important when choosing healthy

products. Figures 4.4, 4.5 and 4.6 show a comparison between the two groups for these grocery

shopping behaviors.

Our first finding is that the healthy food shoppers spend almost twice as much time as the

less-interested shoppers in using different search methods to search for healthy products prior to

their grocery store visits. “asking a doctor or friends” was the most frequently noted method of
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Figure 4.4: Comparison of the two groups’ pre-grocery store visit healthy food searching behaviors.

preference for all users in gathering information on healthy food products. Our second finding is

that when subjects need to find a grocery product of interest, healthy food shoppers more frequently

prefer using the aisle signs or asking grocery clerks than do the less-interested shoppers. Also a much

larger proportion–three times as many healthy food shoppers as compared to the less-interested

shoppers – preferred asking grocery clerks directly for help, when trying to locate food products of

interest. Additionally, when the subjects needed to locate a healthy food product, almost twice as

many healthy food shoppers as the less-interested shoppers, chose to browse the organic/natural

food sections of the grocery store. Finally, our third finding is that while the order of importance

for each of the food quality factors was the same for the two groups, “nutrition > flavor > price

> brand name > visual appeal”, a much larger percentage of healthy food shoppers considered

nutrition, brand, and visual appearance as highly important food qualities in selecting a health

food product than did the less-interested shoppers.

4.2.2.2 Nutrition-based multiple-choice data collection

Our first approach to investigating the kinds of healthy food content information our appli-

cation should provide involved collecting online and in-person survey information from our initial

project 25 participants as to the types of health conditions, diseases or food sensitivities, they

or their family members need to consider when shopping for food products. The 25 participants

and/or their family members had at least one health problem and 16% (n=4) of them had more
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than two health problems. We asked the participants about their own health conditions and

their family members’ health needs, since we assumed that many shoppers often shop not only for

themselves, but for other family or household members as well. We found that 79% (n=82) of the

survey subjects usually buy grocery food products for their family members when they go shopping.

These two cases showed that our mobile application would need to provide in-depth information

on food products that were suitable for a large variety of multiple diseases and food sensitivities

all at one time to the user, while she/he was shopping.

Since, there are just too many possible health conditions and combinations in the real world,

providing correct recommendations for each and every possible heath condition is impractical. So,
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we refocused our approach to a solely nutrition-based approach. In this way, regardless of the

specific health condition or conditions of users, our application would be set up to query users

about the nutrition content of food products they need or wish to purchase. For instance, most

users with a known specific health condition, have already been advised by their doctors as to

which food products to avoid or select that will ameliorate their condition–e.g., a person with

diabetes would already have been advised to eat food products with low-sugar content. Later

in our application’s development in surveying potential users of our application, we found this

approach to be corroborated by their feedback, when the largest percentages of both the healthy

food shoppers (87%) and the less-interested shoppers (60%) indicated that nutrition was the highest

rated food quality factor of interest to them when purchasing grocery food products, as shown in

Figure 4.6.

4.2.2.3 Preference of Aisle-based display

From the online survey data, we also found that potential users of our application prefer an

aisle-based AR display of grocery food products on the smartphone over other types of displays. Par-

ticipants were asked to rate their preferences for three different AR displays of healthy/nutritional

food products recommended by the mobile application on the smartphone: all grocery store prod-

ucts at once, one aisle’s products only, one section of an aisle’s products. Over half (n=59,57%)

of the participants indicated preference for displaying recommended food products in one aisle

only. Also, the online survey subjects indicated that they have frequently bought additional food

products they were not originally planning to buy, which were located near the product they were

buying. This result indicates that another benefit of an aisle-based AR application display is for

users to be able to evaluate more quickly non-planned food purchases in the grocery store.

4.2.3 System Overview

Our system consists of an external image labeling service, a mobile cmponent, and a remote

cloud server component (See Figure 4.7). To determine the initial location of a user in the grocery
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Figure 4.7: System architecture.

store, the mobile component sends a product snapshot to the cloud server component, which

forwards that snapshot to an external image labeling service. This external image labeling service

returns the product identity to the cloud server, which then determines the current location (aisle)

of the user by referring to an indoor layout of the grocery store. After determining the identity

of the aisle in the grocery store, the mobile component estimates user motion, thus providing a

position estimate within the aisle, as well as orientation. The user also inputs his/her health profiles

on the mobile client, e.g., seeking some combination of low-calorie, low-sodium, low-fat, lactose-

free, nut-free, etc. items. This position estimate along with orientation and health condition is

then again communicated to the server, which consults the product location database along with

its health rules to come up with a recommendation of products to buy or avoid. The server has

access to the nutrition facts and ingredient lists of products, and can thus apply health rules to

decide whether products are healthy or not for the given health condition(s). These highlighted

items are then sent to the mobile client, which renders the recommendation results on the screen

via AR. In order to achieve real time performance, it is helpful for the mobile application to cache

data items locally on the client, so as to avoid excessive network communication latency.

In order to meet the objectives of low cost low infrastructure navigation within a grocery store
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aisle, we use three-axis accelerometer information obtained from a user’s mobile phone to estimate

the distance traveled by a walking user. We build one such personalized pedometry system into

our application.

In order to match the 3D perspective of a supermarket aisle and the intuition of the user

about how far away a tagged item is located, the AR tags for items that are closer to the user are

rendered larger than the tags corresponding to more distant items. The result is that as a user

navigates down an aisle, tags grow in size until they pass by out of view as the user walks past the

item, thus giving the user a 3D AR experience.

In order to clearly differentiate between healthy and unhealthy products in the user inter-

face, we have used intuitively colored tags: green for good/healthy products; red for products to

avoid. We measure the effectiveness of this approach in the evaluation section. Additional map-

pings of colors to different categories of food were considered, e.g., vegetables, meats, dairy, fruits.

We found that the latter approach was confusing, therefore focus only on the color tagging of

healthy/unhealthy food products.

4.3 System Components

4.3.1 Image-based Positioning

Our system requires accurate determination of the user’s location in an indoor environment.

Locating the user in an indoor environment using the hardware available on a smartphone is a

challenging problem. The Global Positioning System (GPS) cannot be used in indoor environments,

since line-of-sight communication between GPS receivers and satellites is not possible in an indoor

environment. Radio frequency (RF) positioning systems that use WiFi and Bluetooth radios on

smartphones provide limited accuracy (1 - 3 m) due to the complexities associated with indoor

environments, including a variety of obstacles (people, furniture, equipment, etc.) and sources

of interference and noise from other devices [72]. Some of these RF positioning systems use RF

location fingerprinting, which requires relatively time consuming site survey that may not be feasible
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for large indoor shopping environments. Therefore, we investigated the use of other positioning

technology.

Our system uses a commercial image labeling Web service, called IQ Engines [73], to deter-

mine the user’s initial starting position when using our grocery shopping application. IQ Engines

uses a combination of computer vision and crowdsourcing to tag a photo with a label describing the

content of the image. For example, an image of a box of frosted Cheerios cereal might be labeled

“General Mills Frosted Cheerios”. When an image is submitted to IQ Engines, the image is first

processed by a computer vision system in an effort to provide an accurate label. If the computer

vision system cannot identify the image, then IQ Engines passes the image to its crowdsourcing

network for analysis and tagging. According to IQ Engines, the time to return a label for an image

varies from a few seconds for the computer vision system, to a few minutes for the crowdsourcing

system. To ensure fast image labeling in our experiments, we have pre-trained IQ Engines with

specified images and associated labels for each of the food items in our test environment.

To locate a user within the indoor shopping environment, our mobile application prompts the

user to take a picture of the nearest food item using the smartphone. After this image is submitted

to our cloud server, the server submits the image to IQ Engines for labeling. Upon receiving the

item label for the image, our server looks up the location for this item using a spatial database.

This spatial database contains the name, location, and other associated metadata for each item

found in the shopping environment. In our grocery shopping application, the coordinate system for

item locations is expressed using the following dimensions: aisle number, aisle side (left or right),

division number, shelf number, and item sequence number. Based on our conversations with local

supermarkets, we have found that this coordinate system is representative of item databases found

at some establishments. In this coordinate system, aisles are separated into four-foot divisions, and

shelves in each aisle are numbered from bottom to top. Items in each location specified by a tuple

of “aisle number, aisle side, division number, shelf number” are ordered according to item sequence

number. Figure 4.2 shows a graphical representation of this coordinate system for a typical grocery

store aisle.
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Figure 4.8: The stride estimation function for a representative user. (β1 = 30.35;β2 = 101.45;φ =
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4.3.2 Pedometry-based Localization

A pedometry-based dead-reckoning (PDR) system for indoor localization has been imple-

mented in the Java language for an Android Nexus One smart phone, running on the Android 2.2

(Froyo) operating system. The NexusOne smart phone employs two tri-axis motion sensors, which

we leverage for PDR localization: an accelerometer and a digital compass. The accelerometer we

use for both step detection and stride estimation. The digital compass is used to determine user

heading for which to estimate the direction of motion. A user would typically hold the phone

vertically in order to see the AR tags overlaid on grocery aisles and shelves. Such an assumption

is beneficial to our system in that a near vertical orientation provides exceptional accelerometer

responses in the y-axis, which we leverage in solving the PDR problem. However, we conducted

tests that showed that we can relax this assumption somewhat for a casual user. These results are

presented later.
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4.3.2.1 Footstep Detection

To detect a step, we follow a multistep signal processing method. First, the y-axis accelerom-

eter value is normalized by removing the effect of gravity through a mean removal operation. Sec-

ondly, we calculate a moving average of the normalized accelerometer signal. A moving average

serves to both minimize errors induced by varying the user orientation of the phone in 3-axes,

as well remove unwanted high frequencies from the data. Thirdly, we examine both positive and

negative peaks in the processed accelerometer signal trace. A genuine footstep will generate both

a bound and a rebound phase corresponding to the foot striking and pushing against the ground.

A footstep is therefore characterized by a positive peak closely followed by a negative peak in the

accelerometer data. If the amplitude difference between a positive a negative peak is greater than a

set threshold, a step is recorded. Because footstep frequency is roughly 2-3 Hz, we require temporal

distance between a positive and successive negative peak to be ≤ 300 ms. Peak amplitude difference

required to exceed a threshold of 1.0 g. Both values were experimentally determined and verified

as well-performing choices. The addition of a dynamic threshold adaptation scheme was tested

and found to perform worse than the static scheme, which we possibly attest to the low maximum

android accelerometer sample rate, and so the static threshold method is reported.

4.3.2.2 Adaptive Stride Estimation

Our system provides a distance estimation for each detected footstep. In order to estimate

stride lengths, we have developed a stride estimation function that is based upon the strength of

the bound phase of a footstep, which corresponds to the detected positive peak in the accelerometer

signal trace. The bound phase data feature was identified as most indicative of stride length through

experimental testing. Depending upon user walking traits, a characteristic function can be found

through a training phase to provide the most accurate stride estimation. We report the function

used, with several tunable parameters that tailor the performance to each unique user. A percentage

ρ of user height provides an average, or static, stride estimate, which is then adjusted by a corrective
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function α that either adds or subtracts from the static stride estimation depending on the strength

of the step. As stated previously, footstep strength is indicated by the amplitude of the positive

peak, PeakP , of a detected step. This value is fit to a logarithmic curve, which is scaled by φ and

shifted by ψ. Maximum and minimum possible stride lengths were experimentally determined and

their corresponding PeakP values were set as bounds to the function. All parameters ρ, φ, and ψ

were experimentally determined in this work and used successfully for multiple users. However, the

addition of a training phase per individual user would increase stride estimation accuracies even

further. The parameters used for our work are included as part of Figure 4.8, which also plots the

estimation function shown in Equations 4.1 and 4.2.

Stride =



StrideMIN if PeakP ≥ β1,

StrideMAX if PeakP ≤ β2.

Height · ρ+ α(PeakP ) else

(4.1)

α(PeakP ) = φ · log(PeakP ) + ψ (4.2)

4.3.2.3 Orientation and Heading Estimation

Upon successful footstep detection, the simultaneously polled digital compass sensor data

is examined so as to determine a user heading for the detected step. Since the smart phone is

expected to be held upright by the user for our specific application, we examine the x-axis of the

digital compass. With respect to the smart phone frame of reference, the negative z-axis indicates

forward user movement and the positive x-axis indicates right hand user movement. Coupling

accelerometer footstep detection and digital compass heading estimations, we can therefore keep

track of user displacement through a 2-dimensional plane; this, in our case corresponds to the floor

of a retail environment.

After using the IQ Engine computer vision service to identify initial user location with respect

to products, we need to understand the direction that the long axis of the grocery aisle emanates
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from in order to display the product tags along the aisle’s true axis. Simply assuming that it will

be 90 degrees offset from the orientation of the user when the picture for IQ Engines was taken (as

the user should be facing either the right or left side of the aisle) is not enough, and in practice

yields higher error than is acceptable. Therefore, we examine the user’s locational history prior

to the picture sent to IQ Engines, and perform a linear regression on these (x, y) location points.

Given enough points, a general line of motion is inferred, and from this the aisle axis is found. We

can leverage such a method due to the knowledge of a general grocery store floor plan. Aisles are

perpendicular to a psuedo aisle that stretches from one side of the store to the other, connecting

all aisles. Users must walk this psuedo aisle to reach the aisle of interest. We find only a very

small collection of (x, y) history points is required to attain the accuracy necessary, and thus is our

method.

4.3.3 Localizing the User Within the Grocery Aisle

As mentioned earlier, our approach is to apply prior work in personalized pedometry to

the aisle navigation problem. However, some adaptation is needed for the grocery store scenario.

We observed shoppers’ behavioral patterns as they used our application in grocery stores. We

found that the users did not always hold the phone consistently, upright, pointed forward down

the aisle. The mobile phone’s orientation was often changed, whenever they moved towards food

items recommended by the AR tags of our application. When they moved towards the products

they wished to purchase, they usually changed the mobile phone’s orientation, such as holding it

to down by their side while walking or in a strange angle while holding a basket or operating a

cart. Whenever this happened, the accelerometer sensor incorrectly detected a stride. To avoid

these false strides, we modified the pedometry algorithm to ignore sudden changes in acceleration

if they also corresponded with sudden changes in the orientation sensor.

Another modification we made to the pedometry algorithm was to limit motion to the com-

ponent in the direction parallel to the long axis of the aisle. This is essentially 1D map matching,

wherein the walls of the aisle form a map that confines the travels of the user to a set of acceptable
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paths, or in this case a single path. In this way, our algorithm cannot misestimate the user as being

located within a shelf/wall, and thus our location error is limited to lie only along the long axis of

the aisle.

To achieve this, we construct a bounding box around each aisle, where we bound the range

of the x-axis by the width of a regular aisle in the grocery. When the user approaches the edge

of the bounding box, e.g. the shelves, then we only take the component of the motion along the

axis parallel to the bounding edge, and ignore any component of motion perpendicular to the

bounding edge. This approach keeps the user inside the bounding box. In this way, we were able

to substantially improve the accuracy of our pedometry-based localization.

4.3.4 AR-based User Interface

Our AR-based user interface is shown in Figure 4.9(a). AR tags are shown in 3D depth

perspective, and are rendered using the OpenGL library. Products that are closer to the user will

have larger tags, while products that are farther away will have smaller tags. To localize the tag

next to the related product, we compared the distance on the phone between the product and the

user with a distance on real setting. The depth perspective was adjusted accordingly. Since the

tags in our application are displayed in 3D space, we are able to adjust the display of the tags

according to the angle at which the user is viewing an item using the phone. When the user looks

at the front of the aisle, the tags are shown facing the user. If the user turns to the left or right to

inspect a particular part of the aisle, the tags are automatically rotated to face the user.

In terms of hardware requirements, we found that a phone such as the Sony Nexus One,

which has a 1 GHz processor, 512 MB memory, and 4 GB disk, was sufficient to run the OpenGL

library to render AR objects in real time. In comparison, we found that running our application on

an older Android phone, a TMobile Mytouch 3G running at 512 MHz, resulting in jerky rendering

of AR objects, even after we upgraded from Android 1.6 to 2.2.
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(a) (b) (c) (d) 

Figure 4.9: Screenshot of (a) the AR mobile shopping app (b) the health conditions selection screen
activated by clicking the “Health” button (c) the product information screen activated by clicking
on an AR tag associated with a product (d) a typical non-AR grocery list used to compare against
the AR UI (see evaluation)

4.3.4.1 Dietary food constraints:

People who have diabetes, allergies, hypertension, or other such health issues must often

carefully monitor the types of food they buy in the grocery store. For instance, people with

diabetes need to control their sugar level, so they must avoid high carbohydrate food products that

are high in sugar. People who have allergies, such as peanut or milk allergies, must purchase food

products that do not contain these specific ingredients. People with hypertension should always try

to avoid high sodium products, in order to maintain their health. Some people may have multiple

diseases or health issues (e.g., diabetes and allergies). Our application can help people or patients,

under the care of a doctor, to monitor their food purchases and intake according to specific health

issues they have. Figure 4.9(b) shows how a mobile user, with this application on their phone,

can select different food ingredient requirements– such as “low calorie”, “low sodium”, “no milk”,

“low fat”, etc.–that are tailored to their specific dietary needs. For example, a user with diabetes,

hypertension, and milk allergies would choose “low sugar”, “low sodium”, and “no milk” on this

screen. The mobile application then displays the actual food products on the grocery store aisle

that are advised or unadvised to buy, with green and red AR tags, respectively. The application
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saves these settings, so the user only has to enter them on first use, though the user can change

these settings any time. Also, the application supports multiple conditions, i.e. if two conditions

are checked and must be avoided, then all recommended products must satisfy both conditions.

As the user walks down the grocery aisle searching for products, she or he can easily get more

information about an advised product or a product to avoid, by tapping on the AR tag correspond-

ing to that product that is displayed on the mobile phone. The information displayed when the user

taps on the tag includes the product’s brand name and brief description, the nutritional information

(FDA info), the price, location information (shelf number), and the selling rating–related to the

store’s record of the frequency of purchase for the item. Indirectly this comprehensive information

about the product’s content also provides an indication of the food product’s known or expected

flavor. The condition of the actual product (e.g., fresh or wilted vegetables) and the manner in

which it has been displayed on the shelf in the grocery store contributes to the user’s impression

of the product’s visual appeal. These food quality factors and ingredients were identified as very

important to the survey subjects who evaluated our application as potential real-life users of our

system. The graph in Figure 4.6 shows the different food quality factor ratings that the survey

subjects gave for their evaluation of factors they most pay attention to when selecting healthy food

products. Figure 4.9(c) shows an example of the nutritional information displayed when the user

taps on the mobile application’s AR tag.

4.3.4.2 Static and Dynamic Motion AR Tag Display

The ARFusion application provides users readable information on the phone regardless of

their walking states. When a user walks down the grocery aisle with the mobile phone looking

for preferred products, the tags on the phone would normally be shaking from the motion of the

user. The user can have difficulty reading the information displayed when she taps on a tag. To

correct for this, we propose two features, static and dynamic motion tag display. First, the feature

for the static motion tag display is used when the user walks down the aisle. The application

displays the tags in fixed positions whenever the user points the phone in front of him in the same
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direction of the aisle the user is walking down. It provides a static display to the user that the tags

can easily be read at fixed positions on the screen, even though the background may be varying

wildly. Secondly, the feature for dynamic motion tag display is used when the user is standing

approximately stationary on the aisle. At this point, when the user pans the screen, points the

camera at a product on a shelf, the screen allows tags to change position on the screen and rotate

properly to face the user. To implement this policy, we checked the accelerometer every second to

detect if there is motion or not, and adapted the AR display accordingly.

4.3.5 Health-based Grocery Recommendation

Our AR-assisted mobile grocery shopping application is designed to make customized rec-

ommendations of healthy grocery products to end users in real time. The recommendations

need to be customized since shoppers may have different health concerns such as food allergies,

heart disease, or weight control. The recommendations also need to be generated in real-time (while

shopper is in a specific aisle) for them to be useful. The primary components involved in the rec-

ommendation process include the product database, shoppers’ health profiles, and recommendation

strategies.

Products Database: This database maintains a variety of information regarding each product

item in the grocery store that may be considered for recommendation. This database is usually pop-

ulated by the store, but extra information may be obtained from manufacturer or online databases.

Specific information of importance includes product name, ingredients, nutrients, as well as its lo-

cation in a particular aisle (e.g., shelf section, level). Since the product items differ significantly in

terms of ingredients and nutrients, we only consider the ingredients that people may be allergic to

and categorize nutrients into coarser but more intuitive categories such as low calorie, low sodium,

etc.
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Health Profile: In order to recommend certain items to a shopper, the system must understand

which items are required or wanted by the user. Furthermore, the system is capable of advising

the user against the selection of certain items that have certain nutritional qualities or contain

ingredients that may be harmful to him or her (e.g., ingredients to which the user is allergic). A

simple health-based nutrition model was implemented to support these functionalities for testing

the system. The model was populated with data from two main sources: (1)personal health-based

profiles of users, e.g., food information and ingredients that a person concerned with his/her weight

and who also has a milk allergy might want to purchase for his/her diet or avoid altogether; (2)

family health-based profile, e.g., food qualities (e.g., calories, fat content) family members might

prefer and ingredients that the family members may have been advised by doctors to avoid.

Recommendation Strategy: Food recommendation in grocery shopping environments is es-

sentially a “matching” process between a shopper’s health profile and certain food items in the

products database. Based on existing dietary guidelines (e.g., [74]), we construct a number of

matching rules targeting different health profile categories and the corresponding food categories

to recommend or avoid. At runtime, given the shopper’s health profile and current aisle location,

the server constructs a list of food items, each with one of two recommendation labels: recom-

mended means the item has nutrition needed by the shopper, and warn means the item is in

the list of harmful foods associated with the shopper’s health profile. The recommendation results

are then delivered to the shopper’s mobile device for rendering. Note that our recommendation

focuses on satisfying the rules based on the dietary guidelines. While not a focus of this work, more

detailed recommendation strategies can be developed to consider other factors such as food price,

taste, brand name, etc.
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Figure 4.10: Overall distance walked.

4.4 Experimental Results

4.4.1 In-person survey design

In order to validate our system we collected in-person feedback from 15 users. These users

provided us feedback in a couple of ways: first, they were asked to take an online survey so we

could collect some basic demographics and information about their shopping needs and habits and

any specific health/dietary restrictions. Second, users did an in-person survey with the researcher,

after having accompanied the researcher while shopping in a grocery store for one hour and using

our system on an Android phone. The grocery store we used for our experiments is Lucky’s Market

located in Boulder, CO. In this way, we were able to receive immediate verbal feedback from

the subject on how easy and useful our system was to operate. Finally, the users completed a

satisfaction survey, evaluating how the use of our system could potentially meet their needs for an

improved healthy shopping experience. This user study was approved by the Institutional Review

Board (IRB) [69].

4.4.2 Pedometry-based Localization

The pedestrian localization via pedometer and heading estimation systems were implemented

and tested in Java on a Nexus One smart phone running the Android 2.2 (Froyo) operating system.
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Figure 4.11: Stride length estimation.

User tests to evaluate pedometry step detection, stride estimation, and the combination of step

detection and stride length estimation into an overall distance walked estimation were carried out.

Additionally, different types of users were simulated, from an “engaged” user who wishes to learn

how to use the system to obtain the best performance, to the “casual” user who is not interested in

performance and so uses the system in a careless manner. Further, the method to identify grocery

aisle angle using linear regression on user location history is evaluated.

To evaluate pedometry system step, stride, and distance accuracy, a user was tasked to walk

three trials of 30 paces in testing each of three different types of user strides. The first stride type

is a “short stride,” which is a deliberately short stride of about 50-55 cm. The second stride type

is a “medium stride,” which is a comfortable stride length of about 65-70 cm, which is natural for

most users. Lastly, the “long stride” is one that is the largest the user can manage without jogging

or running; a length of about 95-100 cm. The results of these nine trials can collectively be seen

through Table 4.4.2 and Figures 4.10 and 4.11. Table 4.4.2 shows our system to have an overall

step detection error rate of 3.33 percent. In fact, for longer tests that we omit here, step detection

accuracy was shown to improve with the number of strides taken.

In Table 4.4.2, short strides have tendency for under detection, while long strides are prone

for over detection. This is due to the static threshold used for detection, which is tuned for the

normal stride length scenario. An adaptive step threshold detection scheme was implemented and
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Table 4.1: Step detection accuracy.

Stride Length Measured Steps Actual Steps Error (%)

Short 1 28 30 -6.67

Short 2 29 30 -3.33

Short 3 28 30 -6.67

Regular 1 30 30 0.00

Regular 2 30 30 0.00

Regular 3 29 30 -3.33

Long 1 31 30 3.33

Long 2 30 30 0.00

Long 3 32 30 6.67

|Avg.| 3.33

Std. Dev. 4.41

tested, but suffered a poorer performance than the static method. We theorize this counterintuitive

result to be due to the accelerometer’s 10 Hz maximum sampling rate on the Nexus One smart

phone not providing a smooth enough data curve for the adaptive algorithm to leverage effectively.

Figure 4.11 compares the static and adaptive stride length estimation techniques. The re-

sulting stride lengths represent the average stride length of each of the 9 user trials completed,

calculated by the overall distance measured divided by number of steps detected, but not actually

taken. This removes any additional step detection errors that might be present and allow a pure

comparison of stride length estimation. Not shown in this figure, is the adaptive stride estimation

overall error rate of 2.33 percent, while the static stride estimation suffers 17.06 percent error.

Interestingly, because the static method was tuned for the medium stride length, its average error

actually outperforms that of the adaptive method on the same data set. A point of note is the

extreme accuracy of the long stride under the adaptive estimation scheme. The error bars are

almost too small to be seen, averaging to 99.6 percent stride length accuracy for this stride type.

This excellent accuracy is most likely due to the flatness of the alpha correction function for large

positive peak amplitudes.

Figure 4.10 addresses the combination of error from step detection as well as stride estimation

techniques. An overall walk distance is measured by our system and is compared against the ground
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Figure 4.12: Casual walk: Unbounded method.






























        












Figure 4.13: Casual walk: Bounded method.




























         












Figure 4.14: Circle walk: Unbounded method.



























        












Figure 4.15: Circle walk: Bounded method.































     












Figure 4.16: Bowtie walk: Unbounded method.

































     












Figure 4.17: Bowtie walk: Bounded method.

truth walked distances. shows that In some cases, e.g. adaptive trial 1 for a short stride, an error

in step works to reduce the error stride. However, in most cases, if both kinds of error are present

they combine with one another, which is evident by the increase in overall error from stride (2.33

percent) and step (3.33 percent) to distance walked (3.43 percent).

After evaluation of the general step, stride, and distance performance characteristics of our

system, we turn our attention to the operation of the system given the constraints of our target
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environment – the indoors of a grocery store. We look into the challenges of keeping user location in

the aisle of interest, given complex user movements, and learning about the structure of the indoor

environment – e.g. grocery aisle long axis orientation – given only the motion sensors of the smart

phone. To our knowledge, no other smart phone pedometry system has addressed the challenges of

irregular and highly dynamic movement scenarios capable when a user is browsing during shopping.

To this end, we evaluate three representative scenarios of possible user movement patterns that vary

widely in possible user movement type and complexity. In doing so we additionally stress test our

pedometry bounded location method. Further, we examine the benefit of our bounded method

in finding the long axis of a grocery store aisle, which can be done without any knowledge of the

unique floor plan of the particular store our user is visiting.

We explore three representative scenarios: a 35 m walk down the long axis of a grocery store

aisle with return (casual walk), a repetetive circular walk of 2.5 m radius (circle walk), and a bow

tie shaped walk simulating a psuedo-random walk (bowtie walk). This last scenario, shown in

Figure 4.16 and 4.17, also serves a second purpose in that we additionally use the trace to simulate

a user’s behavior prior to entering an aisle for the purposes of shopping under the use of our

application – so that we may test our method of finding the aisle long axis orientation information.

Firstly, we explore the effect of a “casual” user on a walk down and back the length of a 35 m

long mock grocery store aisle. The test was carried out in lengthy hallway, and so this allowed us

to stress test the system by using a distance longer than is actually found in normal grocery store

aisles. The user type tested is classified as “casual,” because for this user type, care is not taken to

hold the smart phone in a verticle orientation, which would offer the highest locationing accuracy.

Instead, this user is allowed swing the arm holding the smart phone, introducing a high level of

noise data to the sensed user motion. An “engaged” user type was also tested in this scenario, but

it is interesting to note that because the engaged user takes care in obtaining the best performance

from the system, the bounded method was completely unnecessary in offering correction to the

location information.

It can be seen in Figure 4.12 that the user drifts. This drift is caused by both the casual
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nature of the user type, as well as an inaccurate estimation of the grocery aisle angle, i.e. the aisle

orientation was set to the left of true by 10 degrees. The bounded model, Figure 4.12 shows our

systems corrective action under such a scenario. The total distance walked is shown to be shorter

under the bounded method, so some sacrifice in accuracy is shown to be incurred, however such

increased orientation accuracy is an acceptable tradeoff for the distance penalty.

Figures 4.14 and 4.15 test our system for an erratic circular user walking pattern. Often, a

browsing shopper will return to a location of interest after initially passing it by. This scenario is

very difficult to handle as errors in orientation cumulatively add at each step. In our test case, we

use an engaged user, walking in a circle for four laps. The unbounded method in Figure 4.14 shows

the effects of such orientation drift in which the user’s virtual location would move across aisle

boundaries. The bounded method handles this scenario very well, enforcing the user’s location to

be confined to a specific block of floor space, we avoid such drift.

Finally, Figure 4.16 and 4.17 simulate a psuedo-random walk, useful for testing cases in that

a user changes orientation direction more than once, which is common under a browsing movement.

Also useful is this case to simulate user motion before entering an aisle. In Figure 4.16 we see the

true axis of movement is off from the smart phone estimation – if not, the bow tie shape would

not be tilted slightly to the right. The bounded method in Figure 4.17 again corrects for this,

while incurring small finer-grained error as a tradeoff. Further, we simulate the aisle orientation

algorithm by plotting a linear regression of step points overlayed on each bow tie shape. We show

with a minimal collection of points our aisle long axis orientation estimation has good accuracy as

shown by the line regression overlayed in the figures, therefore providing higher accuracy for use in

the system’s post-image localization mobile AR shopping phase.

4.4.3 Image-based Positioning

The accuracy of the IQ Engines service was tested through taking pictures according to

varying angles, as shown in Figure 4.18. 10 grocery items were photographed at 45, 0, and -45

degrees and the pictures were then sent for evaluation to IQ Engines which then reported back its
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Figure 4.18: IQ Engines computer vision product identification and label return accuracy.

result. We took one picture straight from the front of the product and took two pictures from the

sides – one from the left at a 45 degree angle and one from the right at a -45 degree angle. 30

total pictures were taken and tested. We observed that the accuracy of IQ Engines service was 100

percent in the straight on and left cases. However, in the right case the accuracy was 80 percent,

failing to recognize the product in two of the photos. The product recognition failures of these two

photos occurred according to the following reasons. Firstly, we took a picture of a product named

“Hamburger Helper”, specifically of the flavor “Chili Cheese”. The IQ Engine service correctly

recognized the bigger size of “Hamburger Helper”, but incorrectly identified “Chili Cheese” as

“Betty Crocker” instead. Secondly, we took a picture of a bottle of soy sauce from the right side.

The IQ Engine service did not read the information since the shape of the bottle was cylindrical,

causing the majority of text to wrap around the bottle out of view. This bottle passed from the

left, because more identifying features occur as part of the beginning of the product name, which

is visible from the left. For these reasons, IQ Engines shows worse performance from right oriented

photographs of grocery store products, but a high accuracy of above 90 percent is still achievable

overall.

4.4.4 Real-grocery subject performance

We evaluated our application’s in-person real-grocery store functionality by analyzing the

data we collected from the 15 in-person subjects: 87% from men and 13% from women. Participants’
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Figure 4.19: Subject shopping speed without the
constraint of ensuring the health of the selected
product.
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Figure 4.20: Subject shopping speed under the
constraint of ensuring the health of the selected
product.

age ranged from 18 to 50, with the majority (53%) between 25 and 35 years of age. All results

described below provide a comparison between the current visual guiding system being used at

Lucky’s Market (referred to as non AR-assisted) and our AR-assisted smartphone app. Lucky’s

Market includes a two-level visual guiding system to direct users to the correct aisle and a customer

service kiosk to receive nutritional information. In all our experiments, we did not influence the users

in any way with respect to how they use the visual guiding system or the nutritional information

kiosk.

In Figure 4.19, we conducted an experiment to measure the efficacy of the AR tags compared

to non AR-assisted. We asked users to find 3 products in the aisle, without regard to any health

conditions. The time needed to find the 3 products with and without AR was compared. All AR

tags were colored green. The experiment was set up so each individual was asked to find one set of

3 products without using our AR-assisted app and another set of 3 products using the AR tagging.

Latency comparisons are therefore made across users rather than within the same user, since it

would not be fair to ask a user to find the same 3 products by another method that they had just

found. Figure 4.19 shows that for all 15 users that we tested, our AR-assisted tagging resulted

in typically much faster performance 2X-3X in finding grocery store products. Most non AR-

assisted users in fact exceeded the maximum cap of 5 minutes that we set for the product discovery
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experiment, and would have taken longer in practice, so our 2X-3X estimate is a conservative one.

Some users were quite savvy in using the list, but even in those cases the AR tagging results in

faster discovery of recommended products.

In Figure 4.20, we conducted an experiment to measure the impact of healthy recommenda-

tions with and without AR tags. Again, we gave users a list of 3 products to find in the aisle, but

in this case one of the products was unhealthy. In the case of non AR-assisted, a user may have to

inspect the packaging, the nutrition facts label, or read through the ingredients in order to deter-

mine whether a product was unhealthy, thus slowing down their shopping time. In contrast, our

AR-based application already performs this filtering using our health recommendation subsystem

on behalf of the user. Figure 4.20 shows that even the fast users from the earlier test are now so

slowed by checking for healthy conditions that they are unable to finish within the 5 minute time

limit, whereas in all cases the AR-assisted shopping finish in 2 1/2 minutes or less.

We also observe that our system remains similarly fast across both health-constrained and

non-health-constrained shopping. Since the health-constrained test was performed after the health-

free test, we hypothesize that users became more familiar with using our system, so the additional

burden of ensuring that products are healthy was compensated for by increased familiarity with

our mobile AR system.

Our test also examined the improvement our system provides in the identification of healthy

grocery items, and conversely, the labeling and warning the user against purchasing products po-

tentially unhealthy with respect to the specific user’s dietary needs. We found that when subjects

did not use our system, they were actually able to to correctly distinguish such healthy products

from unhealthy products with perfect accuracy. Similarly, our system also performed with 100

percent healthy versus unhealthy identification. The improvement, however, came with the speed

our system was able to do this versus the increase in time required for the subject to actually read

the ingredient list themselves. Our system required no additional time.

Figure 4.21 shows the average satisfaction rating results. Almost all of the real-grocery

shopping experiment participants (93%) were highly satisfied with our system’s overall performance



76

7% 
7% 

7% 

33% 

46% 

1 (slow)

2

3

4

5 (fast)

7% 

0% 

27% 

20% 

46% 

1 (poor)

2

3

4

5 (good)

(a) (b) 

(c) (d) 

0% 0% 

7% 

33% 

60% 

1 (poor)

2

3

4

5 (good)

0% 0% 

27% 

27% 

46% 

1 (useless)

2

3

4

5 (useful)

Figure 4.21: In-person participants’ satisfaction with aspects of our system (a) Overall performance,
(b) Usability (c) Speed (d) UI

(5:60%, 4:33%) and the remaining 7% gave it a neutral satisfaction rating. About three-fourths

(5:46%, 4:27%) of them were also highly satisfied with our application’s usability, and the remaining

one-fourth (3:27%) were neutrally satisfied. Participants satisfaction with the speed of use of our

system in enabling them to quickly find healthy food products was also rated quite highly by 79% of

the participants (5:46%, 4:33%). The application’s UI also received high satisfaction ratings from

a large majority of the in-person experiment subjects, with two-thirds of them (5:46%, 4:20%)

indicating they were highly satisfied with its UI.

4.4.5 On-line survey evaluation of our application

Finally, we evaluated multiple features of our application based upon the QUIS (Questionnaire

for User Interaction Satisfaction) [75] tool’s structure, which is designed to assess users’ subjective

satisfaction with specific aspects of human-computer interfaces. As part of the survey reported

in Section 4.2.1, the users were asked about their overall satisfaction and satisfaction with screen
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Figure 4.23: Satisfaction ratings for the application screen interface

interface, and usability/UI.

Figure 4.22 shows the average rating results for different dimensions (overall-terrible:wonderful,

difficult to use:easy to use, slow:fast, dull:stimulating, rigid:flexible, useless:useful) received from

the 104 online participants. Overall, the participants were very satisfied with the features of our

system. Three-quarters (74%: wonderful) of them were highly satisfied with the system overall and

80% of them indicated our system was very useful for the purpose it is intended. Over half to more

than two-thirds of them reported it was: easy to use (54%), fast: (63%), stimulating (59%), and

flexible: (69%). Only 3-11% of the participants rated these features unfavorably–giving them the

low ratings.

Next, we asked participants to evaluate the screen interface: specifically the readability of
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the characters on the screen. Figure 4.23 shows average rating results. Almost two-thirds (62%)

of the participants indicated that the characters displayed on the system’s screen were easy to

read. Three-fifths of the participants (58%, and 57% respectively) reported that the organization

of information on screen was presented very clearly and the sequences of the screens presented was

also quite clear and understandable. Only 5-10% of the participants rated these three features

unfavorably.

Finally, we collected feedback from the participants on their impressions of the usability

and UI features of our system. We asked them to rate the following features: use of colors and

sounds, system feedback, system messages, and AR-tags, based on a 5-point ”poor to good” scale.

Figure 4.24 shows the participants’ average satisfaction rating results. The participants were quite

highly satisfied with our system’s usability and UI (Use of colors: 77%, System feedback: 60%,

System messages: 67%, AR-tags: 55%). Only between 2 and 7% of the participants rated these

features as functioning poorly (1/2).

In summary, a large majority of the 104 online survey participants who evaluated the video

demonstration of our system were quite satisfied with its overall performance, screen interface,

and usability/UI. In addition, feedback from the 15 in-person survey subjects who evaluated our

system, after using it in a real grocery store shopping experience, indicated that they were highly

satisfied with its functionality. Taking both of these findings together into consideration, we expect
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(a) (b) (c) 
Figure 4.25: Error rate of Shopping-based Personalized pedometry for three scenarios: (a) placing
the phone on the cart handle, (b) holding the phone in hand with the basket handle , or (c) holding
the phone in hand.

Table 4.2: Footstep Detection Accuracy
User Status Measured Avg. Steps Actual Steps Error (%)

With Cart 93.1 100 -6.9

With Basket 94.3 100 -5.7

Only with Hand 95.5 100 -4.5

that our system will prove to be very helpful to food shoppers who need to quickly and efficiently

locate healthy food products in a grocery store.

4.4.6 Shopping-based Personalized Pedometry

We evaluated the shopping-based pedometry algorithm, and focused on the accuracy of the

number of footsteps measured with this algorithm, using the accelerometer sensor. When users

are looking for products to purchase, they use our application by holding the phone vertically,

pointed directly in front of them. Then when they identify a product to put in their cart or basket,

they usually change the mobile phone’s orientation as they approach the product–by either placing

it on the cart handle, grasping it with the other hand that is holding the basket handle, or by

simply moving their hand that’s holding the phone. We enhanced the pedometry algorithm to

enable it to detect these shopping-based behaviors and to reduce the change-in-orientation errors.

We performed an experiment to measure the accuracy of our algorithm’s footstep detection, using

the pedometry algorithm with 5 subjects, who were instructed to hold the phone in each of the

3 positions–on the cart handle, with the basket handle, and in their hand alone in a non-vertical

position–as shown in Figure 4.25. Table 4.2 shows the average footsteps measured and the error
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rates obtained for the 5 subjects who used our application, while walking 100 steps for each of

the 3 phone positions described. The shopping-based personalized pedometry closely determined

the actual number of footsteps walked in each of the scenarios, with (a) 6.9%, (b) 5.7%, and (c)

4.5% error rates noted in the table. If we approximate each stride as about 3 feet long, then we’re

accumulating error at a rate of 15 feet every 300 feet walked. The typical grocery store aisles that

we tested in were about 40 feet long, and users did not spend 100 strides in a given aisle, so the

accumulated error was small enough that it did not affect the perceived accuracy of overlaying of

the AR tags within an aisle. However, missed strides will accumulate when considering whole-store

cross-aisle navigation.

4.5 Chapter Summary

This chapter has presented a mobile-based augmented reality system to help improve the

ability of shoppers to find healthy food products in a grocery store aisle. We have shown that

our application’s color-based AR tagging functionality substantially reduces the amount of time it

takes for shoppers to find desired healthy food products and avoid unhealthy ones. We conducted

in-store evaluations of our system with 15 users of our application, and found that mobile AR

tagging improved by at least 2X-3X the speed with which shoppers could find healthy products.

We also conducted online surveys with over 100 subjects and found that 74% were highly satisfied

with our application and only 3-11% were dissatisfied with our application.



Chapter 5

Wearable Sensor Size, Weight, and Power (SWaP) Analysis

The current state-of-the-art in physiological monitoring solutions are ill-positioned: relying

either on bio-sensors that measure intrinsically low-dimensional or sparse data (e.g. heart rate,

blood pressure, body temperature) or on highly complex sensors (PET, fMRI, MEG) that are too

difficult or impractical to integrate into a soldier’s operational routine. Few systems leverage the

electroencephalogram (EEG), which is the primary sensing technology for cognitive health moni-

toring. Furthermore, none of these solutions attack the problem from a total-system perspective,

instead often concentrating on advancement of individual sensor components or improvement in a

single targeted objective. For this work, we present a Soldier-borne wearable and wireless system for

physiological monitoring of Soldier cognitive state, combining EEG with a small biomedical sensor

suite. We compare our results with a commercial wireless EEG headset, and give further discussion

on the measured SWaP trades of the system. Finally, a software framework leveraging the emerg-

ing Android smart phone platform is described that provides both on-board neurofeedback to the

soldier and a method of data exfiltration for future offline data analysis and data warehousing.

5.1 Related Work

Soldier-borne systems for real-time physiological and cognitive monitoring have the poten-

tial to create both novel tactical advantages and previously unattainable levels of medical safety

to the war fighter. Wearable suites of heterogeneous biomedical sensors could potentially stream

multi-level real-time information – from the individual soldier to the collective platoon or battalion
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– to decision makers or to data warehousing for archival and off-line analysis purposes. Elec-

troencephalography (EEG) – electrical activity generated by the brain which can be non-invasively

sampled at or near the scalp – is a biomedical signal that has recently shown promise for low

power and wireless ambulatory monitoring of cognitive state [76, 77]. EEG sensors combined with

traditional bio-sensors could provide a more complete picture of a soldier’s well being. Especially

attractive to the military application, EEG is a real-time measure for a subject’s willingness and

ability to perform a task, as well as a proven early-identifier of symptoms of post-traumatic stress

disorder (PTSD) and mild-traumatic brain injury (MTBI).

For this work, we provide a systems-level analysis of high-level design trade-offs for accuracy,

energy, reliability, and Soldier wearability of a laboratory-demo physiological and cognitive moni-

toring system. For verification, we test with a prototype Soldier-borne cognitive and physiological

status monitoring system comprised of EEG, body temperature, and skin humidity sensor suites.

The design space of this system, constrained to the strict requirements of the war fighter, requires

identifying optimum trade-offs of many multi-dimensional design parameters. Design constraints

include reducing size, weight, and power (SWaP) of the system. Design parameter trade-offs include

appropriate sensor type selection and combination, number of sensors needed by type, locations for

optimum on-body placement (e.g. EEG electrode scalp locations and montages), and schemes for

sensor data reduction, feature extraction, data compression, and wireless data transmission. In the

design of this sensor system, design parameters need careful balancing to achieve overall constraints

for detection accuracy, energy consumption, and reliability, all while minimizing encumbrance to

the soldier – this work strives to expose the relationships between these competing objectives.

Discussions on physiological monitoring system architecture [78], energy-aware system de-

sign [79], and energy-accuracy trade-off approaches [80, 81, 82] exist, but a holistic treatment of

the trade space is absent from the literature. The optimization of so many interrelated design

parameters is extremely laborious and is impossible to do exhaustively. Therefore, for this work

we take a semi-experimental heuristic approach, using small experiments to identify characteris-

tics of our use case coupled with available knowledge to drive the setting of system parameters.
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In summary, we contribute both theoretical and empirical conclusions as to the optimum points

across these multiple design parameters, determining the nature of design parameter relationships,

and guaranteeing a meeting of design requirements of a soldier-borne physiological and cognitive

monitoring system. The following main contributions are as follows.

• A novel wearable and wireless physiological and cognitive monitoring system is presented.

• A novel Android software framework for the cognitive monitoring of users’ interactions with

3rd party Android applications.

• Results comparing the system accuracy against Soldier SWaP.

The remainder of this chapter is organized as follows. In Section 5.2, we provide an introduc-

tion to the electroencephalogram (EEG) and give a brief treatment regarding its use in the mobile

or wearable scenario. Section 5.3 provides a systems-level overview of the wearable EEG system

reported on, with emphasis on the organization and interaction of both the hardware and software

architectures. We give our results in Section 5.4, comparing sensor accuracy against system SWaP

for a myriad of competing system configurations. Section 5.5 discusses potential uses of wearable

EEG technology for the military application, and lastly, Section 5.6 concludes the chapter and

offers some thoughts on the potential future directions of the work.

5.2 Mobile Electroencephalography

The electroencephalogram is a non-invasive technology for sensing and recording the neural

activities of the brain. Due to the low size, weight, and power (SWaP) possible with EEG, it is one

of only two neural imaging techniques realistically suitable for the mobile or wearable applicationthe

other being near infrared spectroscopy (NIRS), a new technology still under active research. By

contrast with NIRS, EEG enjoys a long and established history and is currently less susceptible

to the environmental effects of the mobile application. EEG was first discovered in the 1920s

by Hans Berger [83], and is currently primarily used as a clinical diagnostic tool for many brain



84

Figure 5.1: International 10-20 System for EEG electrode placement locations.
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disorders and diseases, e.g., sleep studies, epilepsy, Alzheimer’s, ADHD, PTSD, and MTBIs [84, 85,

86]. However, only recently has work to liberate the technology from highly controlled clinical or

laboratory settings as a sensor for novel mobile applications in detection of previously unleveraged

user contexts been done. An EEG records rhythms produced by the brain caused by spatial and

temporal synchronizations of neighboring neurons action potentials. Collectively firing neurons

produce additive current flows, which in turn create field potentials that become measureable at

the scalp. Patterns found in subband frequency spectrograms can give indications to levels of

subject alertness, attention, arousal, anticipation, affect (emotional response), awareness (cognitive

strategy a user is employing), agency (intention behind actions), and cognitive workload (high-

level cortical processing) [87]. To perform an EEG recording, electrodes must be paired together

such that one or multiple averaged electrodes are used as the reference while a separate electrode

performs an actual measurement. Electrodes used as reference for another electrode may still

be used for measurement if referenced against a third electrode, or common averaging, which is

the popular choice. The choice of how to pair electrodes, coupled with their placement on the

scalp, is called an EEG montage. The International 10-20 system of electrode placement, shown

in Figure 5.1, standardizes montage selection, spatially dividing the brain into specific regions of

interest. Choosing the proper montage maximizes signal-to-noise ratios and improves the chances

of detection of targeted brain wave activity.

As EEG electrodes simply measure the electrical potential of their placement location on the

scalp, an extremely high temporal resolution in brain function monitoring is therefore possible. High

temporal resolution is extremely promising for the mobile application, where signals are subject to

environmental noise and motion artifacts. With high temporal resolution data, an algorithm could

be tuned to selectively sample data if, for example, another sensor (e.g. an accelerometer) detects

a fleeting high noise scenario. However, EEG suffers from inherently low spatial resolution due to

the summed neural impulses blurring as the volume conduct up through the neighboring neurons,

cerebrospinal fluid, and past the skull. When compared to other methods such as PET and fMRI,

which can resolve down to 1 mm3 or less, EEG has a spatial resolution of 3-5 cm2. Fortunately,
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Figure 5.2: Wearable Soldier-borne physiological monitoring system architecture and associated
data flow.

this fact allows for sparse EEG electrode arrays, which is ideal for mobile applications’ low power

requirements. Due to the portability, electrode sparsity, lightweight real-time computing require-

ments, and accuracy in classification and detection of brain function, EEG is an excellent choice

for a wearable brain-computer interface (BCI), as compared to other brain imaging technologies.

The wearable Soldier-borne system presented in this work is comprised by a heterogeneous

suite of biosensors to enable real-time monitoring and identification of Soldier physiological health.

All sensor types and supporting embedded computer hardware are intended for future integration

into the commonly issued Soldiers’ helmet, as most significant bio-signals are readily perceptible

from the head region of the body. Here, we present the system-level design of a single Soldier-borne

system, able to record and build cognitive context using EEG, skin humidity, and skin temperature

data, and inform either the soldier themselves or the command structure of this information.

Multiple Soldier-borne systems are intended to wirelessly connect to form a larger soldier-to-soldier

sensor network, in which sensor data exploitation would follow a bottom-up hierarchical data-flow.

However, while such multi-level data sharing, access, and control is a future research goal, here we

only focus on the design and operation of an individual Soldier-borne EEG system.
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5.3 System Architecture

The Soldier-borne mobile EEG system architecture is shown in Figure 5.2, and is comprised

of an embedded computer hardware system paired with a soldier’s military-issued–or perhaps even

personal–Android smart phone. The embedded system samples, preprocesses, and transmits sensor

data over a wireless Bluetooth connection to the Android device carried by the soldier. From

there, the Android device can either interact directly with the soldier–providing neurofeedback

in the form of alerts to better inform or warn the soldier about his own current cognitive state,

forward this information up the chain of communications to higher commanding officers and improve

their decision making, or record this information for later offline mission correlation and analysis.

Android was chosen over Apple’s iOS platform for its openness as well as the state-of-the-art low-

power high-performance mobile architectures included on many currently available Android smart

phones–features both ideal for military development as well as for meeting high performance signal

processing requirements while meeting the energy constraints in the mobile setting.

As seen in Figure 5.2, EEG potentials collected by electrodes embedded in the soldier’s helmet

are first amplified and filtered by discrete analog and digital components before the digital values

are wirelessly transmitted by Bluetooth radio to the Android smart phone for processing. Next,

windowed real-time feature extraction of the streaming EEG signal is performed by the Android

device, whereby a reduced set of statistics computed from the signal’s Wavelet transform coefficients

form a minimized feature vector. The feature vector represents only those EEG signal components of

greatest significance for the system’s current cognitive interest, and allows for reduced computing

time in later stages of the signal processing chain. This feature vector is then translated into

meaningful information about the Soldier’s cognitive state through a semi-supervised SVM classifier

that is trained using both pre-labeled offline data and unlabeled online data. Decisions regarding

the specific types of and content of the feedback delivered from the Android smart phone to the

soldier can then be computed and carried out. Feedback can come in the form of visual, auditory,

or haptic alerts, allowing a soldier’s focus to remain on the current mission.
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Figure 5.3: Block diagram of the main circuit board (Left) and modularized EEG channel amplifi-
cation and filtering circuit boards (Right). Starred* outputs are unused.

The individual system reported here is planned to be eventually incorporated into a larger

design as a single node of a wireless sensor network. While the current system design does not

yet include explicit provision for networking between individual Soldier systems, information could

theoretically be shared at any level in the signal processing procedure, from raw sensor data to the

informed neurofeedback decisions. This idea is represented by the ‘Big Data’ box in Figure 5.2, and

would require the reconfiguration of the system to enable a wearable ‘gateway’ node system that

could additionally receive and aggregate sensor data from across a full platoon or battalion. This

idea, while not explored experimentally in this work, is further discussed and expounded upon in

Section 5.5.

5.3.1 Embedded Hardware Design

Before each channel of EEG data is processed by the Android smart phone, it must first be

amplified, filtered, sampled, and transmitted by the embedded hardware portion of the system.

Figure 5.3 shows a block diagram of the configurations of both the main printed circuit board
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(PCB) and modular EEG channel PCBs which performs the amplification, filtering, and sampling

of a single channel of EEG data. This work is currently intended for academic exploration, and as

such the EEG analog amplification and filtering design was born out of a combination of multiple

open EEG projects on the web, the most popular of which being [88]. Starting with these open

designs, modularity, a wireless interface, and heterogeneous sensors were made compulsory to the

final design. The overall embedded hardware system is comprised of anywhere from 3 to 9 PCBs,

depending on the number of EEG channels required under the desired application’s EEG montage

(a single main PCB plus 2 − 8 EEG channel PCBs). The EEG channel boards were designed to

be modular, that is, they can either connect to the main PCB or they can connect to other EEG

channel boards in a daisy chain fashion. This facilitates multiple montage configurations under

one system: EEG electrode leads are kept short allowing close proximity of board and electrode

scalp site, which minimizes environmental noise interference due to cable length. A modular design

also provides small PCB footprints, and facilitates both the task of physical integration into soldier

helmets and the meeting of soldier SWaP requirements.

5.3.1.1 Main Sensor PCB

The main PCB coordinates data collection, aggregation, and transmission of data from all

EEG channels and other supporting bio-sensors. The layout of the main board of the embedded

hardware design is shown as the left side of Figure 5.3. The main PCB consists of an Arm Cortex-

M0 microcontroller, Bluetooth radio, tri-axis accelerometer, skin humidity sensor, skin temperature

sensor, and voltage regulation for the all boards and components in the system. As both humidity

and temperature sensors reside on this board, it must be mounted in the Soldier helmet such

that it has close proximity to the soldier’s scalp. All sensors communicate through an I2C serial

interface, and are polled by the Arm microcontroller at regular sampling intervals. The humidity

and temperature sensors are polled at a 1 Hz sample rate, and each channel of EEG is polled at

a 200 Hz sample rate. As humidity and temperature are slow to change, lower than 1 Hz sample

rates are possible without affecting data fidelity. As EEG signals are known to contain information
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(a) Modular single EEG channel amplification and filtering circuit
board.

(b) Three types of dry EEG electrodes used: (Left to Right) flat-type,
pin-type, and clip-type.

Figure 5.4: Modularized individual EEG amplifier and dry electrodes.

in frequencies from 1-100 Hz, we therefore sample at twice this frequency so as to satisfy the

Nyquist rate. Collected sensor data is ordered into packets with headers containing information

such as sensor types and counts, and is forwarded via UART to the Bluetooth 2.3 RN-42 radio for

wireless transmission. The communication protocol between the Android and embedded hardware

is currently one-way, however future two-way communication could be useful, for example enabling

live reconfiguration of hardware through an Android interface.

5.3.1.2 EEG Channel PCBs

An EEG channel board is composed of both analog and digital hardware for amplifying,

filtering, and digitally sampling the EEG potential. For each channel of EEG required, one EEG
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channel circuit board is required. A block diagram for an EEG channel board and its connections

can be seen to the right of Figure 5.3 and its photograph seen in Figure 5.4(a). The required

number of EEG channel boards can be daisy chained together, with the first board in the daisy

chain linking all other EEG channel boards to the main PCB board. Such design modularity is

emphasized so as to help keep Soldier SWaP low, while also easing PCB and helmet integration with

smaller PCB footprints. Furthermore, modularity enables locating EEG channel PCBs very near

to the positive EEG electrode scalp site, thereby reducing electrode cable length, limiting electrical

noise. To further reduce noise, all electrode cabling is actively shielded, with common-mode voltage

of the sampled EEG signal driving cable shielding and a full-board ground plane is used as the 2nd

layer of the PCB layout.

Dry electrodes, shown in Figure 5.4(b), are made from pure silver and are constructed in

three types: pin, flat, and clip. Flat electrodes improve skin-electrode coupling, but are only viable

for use on the forehead or on shaved areas. Pin electrodes are made with silver wire and enable

use through hair. Clip electrodes allow attachment to the ear, a commonly used location for the

reference EEG or driven-right leg (DRL) electrodes due to the ear’s proximity on the head and lack

of EEG signal. Silver is used as the electrode surface for its highly conductive properties, however

other cheaper materials have been shown to perform well in active configurations and would likely

be used in future designs to reduce cost. Currently, passive electrodes are used; however, active

electrodes leveraging unity-gain operational amplifiers are planned for the next design phase. The

planned active electrodes would reduce source output impedance and also more closely match

positive with negative EEG electrode source impedances; both changes that would help to improve

the sampled EEG signal quality.

By the time neural signals volume conduct to the scalp surface, they have reduced consid-

erably amplitude and are on the order of 1-50µV. To enable high-resolution digital sampling of

such faint potentials, considerable amplification and filtering must be employed. Figure 5.3 shows

the general flow of this process, where black lines indicate the flow of the signal in analog form,

before analog-to-digital sampling sends values to the main board over an I2C bus, represented by
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purple-colored lines. The first stage of the amplification process is a FET-input instrumentation

amplifier with an extremely high input impedance of approximately 1012 Ω. High input impedance

is critical, as the electrode-skin source output impedance using passive dry electrodes can be from

10 to 100 kΩ, yet target potentials are only on the order of µV in amplitude. Low input bias

currents are therefore possible with such high amplifier input impedance. The gain of this stage is

set to 12. The averaged, or common-mode, voltage from this stage is buffered and inverted (labeled

‘CMV’ in Figure 5.3) before it is averaged with all EEG channel boards is amplified in the driven-

right leg (DRL) stage to be fed back into the subject as a method of active noise cancellation.

In the second amplification stage, another high-impedance amplifier is used as an active high-pass

filter, with fc = 0.15 Hz and a gain of 55. Finally, the signal is low-pass filtered with an 8th-order

Besselworth filter with fc = 59 Hz before digital sampling. Sampling is done with a 16-bit (12-bit

effective) ∆−Σ-style analog-to-digital converter (ADC). A ∆−Σ ADC was used over a successive

approximation register (SAR) ADC due to its superior characteristics for continuous sampling such

as built-in digital filtering, higher accuracy due to oversampling, and lower noise from quantization.

5.3.2 Software Design

The software driving the wearable Soldier-borne EEG system consists of two interacting parts:

the embedded sensor system firmware and the Android smart phone architecture, which together

communicate over a wireless Bluetooth channel. The embedded firmware portion is responsible for

general sensor data acquisition and transmission, while the Android software architecture receives,

processes, and correlates sensor data; either against a separately-recorded mission timeline, or

against a soldier’s interaction with a 3rd party military issued Android application. Examples of

such a 3rd party application might be software tools for receiving real-time command directives,

real-time monitoring of the meeting of mission objectives, or the software interface for an advanced

weapon or strategic mission tool–all applications able to benefit from real-time EEG monitoring

and that which is critical to mission success.

The embedded firmware portion runs on an Arm Cortex M0 residing on the system’s Main
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(a) Current offline processing flow for 3rd party Android appli-
cation scenario.

(b) Current Android software architecture and user-driven data
flow.

Figure 5.5: Android software use case scenario and architecture.

Sensor Board, described in Section 5.3.1.1, and is written in the C language. The firmware includes

drivers to operate the Arm’s on-board UART and I2C bus interfaces, provides proper initialization

and control of all connected sensor components, and coordinates the timing and execution of sensor

data sampling, packaging, and transmission for all system sensors.

The Android smart phone architecture, written in Java and capable of operating on any

smart phone installed with the Android 2.2 (Froyo) operating system or higher, has two main

objectives: firstly, to capture all sensor data from the embedded system, and secondly, to capture

all user interaction with a 3rd party application. The Android software architecture is shown in
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Figure 5.5(b). To accomplish our objectives, two Java constructs are required: the Android activity

and the Android service. Capturing sensor data from the embedded system is done in real-time

across a Bluetooth connection invoked through an Android activity. The Android activity then

invokes an Android service which handles the interaction with the 3rd party event data; seen in

Figure 5.5(b), the Task/Game’ box represents any 3rd party Android application. Specifically, user

‘touch events’ (i.e., when a user uses the touch screen to interact with a 3rd party application)

are recorded to correlate online or offline with a user’s EEG and other biosensor data from that

time period. Data packets are received and time stamped by the Android OS for later correlation

with user event data from the 3rd party application. Currently, both the sensor data captured

by the embedded system and the user touch events captured by the Touch Event Service on the

Android side are simply written to a file on the Android smart phone’s Secure Digital (SD) memory

card, following the architecture of Figure 5.5(b). While all data analysis and signal processing is

currently performed offline, the task of porting this code to run in real-time is underway. A future

goal of the work is to tailor the Android signal processing code to optimize for high classification

accuracy and low power; both competing variables.

The user-interface flow of this system is shown in Figure 5.5(a). In words, a soldier would don

their helmet and switch on the embedded hardware portion of the system with a simple button.

They would then launch the associated Android application on their smart phone and use the menu

system to pair the embedded helmet device with their phone’s Bluetooth device. Whenever ready,

they could initiate data collection, upon which time a small overlay appears near the top of their

screen. This overlay contains controls to start and stop monitoring of application touch events. If

interfacing with a 3rd party Android application (we envision this application as military-issued),

they would then launch that application, and toggle Touch Event monitoring when they are ready

to begin EEG-driven application interaction. In order to cease system operation, the Soldier would

disable Touch Event Monitoring through the overlay controls at the top of the screen, navigate back

to the system’s EEG monitoring application, disable EEG and physiological monitoring, and then

finally power off the embedded system in their helmet. This flow is an initial one, in that it was
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Figure 5.6: EEG data trace (Bottom) with its spectrogram (Top) for a single EEG sensor. Red
lines denote separation between time periods of subject’s eyes held open, held closed, and then held
open again.

created to ease efficient data collection in the laboratory for development and testing purposes. A

final flow is envisioned to be much more user-friendly, with less steps and an intended single-push

button operation offering full transparency to the user.

Additionally, as the signal processing of the data collected by the system is currently com-

pleted offline, the prototype system acts as a data recorder. The signal processing algorithms

currently used to analyze the data in Matlab, are being developed with the mobile smart phone

computational architecture and power requirements in mind. All signal processing done offline

is windowed across the time-series data, so as to make porting of these algorithms to work with

real-time streaming data a match. The porting of these algorithms from Matlab source code to

the Android Native Development Kit (NDK) is underway, and is intended to be reported on in

future proceedings. The Android NDK is chosen over the SDK, as it allows for performance-critical

sections of an application to run in native C or C++ code.



96

5.4 Results

The top-level motivation of this work is to develop a system capable of better protecting

a Soldier’s physiological, mental, and psychological well-being through a leveraging of real-time

information regarding a soldier’s cognitive state. Therefore, high accuracy of EEG data obtained

by the system as well as a proper ability to interpret said data is absolutely essential to the

accomplishment of this goal. We have collected and analyzed data from this system, applying

a signal processing flow consisting of feature extraction, reduction, and machine learning; a flow

similar to what we expect to be used under final system deployment. As a point of reference, we

repeat our experiments using a commercial 14-channel wet-sensor wireless EEG headset [89] that has

recently received attention in the literature [90]. The Emotiv headset, while originally intended for

the entertainment market, has recently shown promise as a cost-effective brain-computer interface,

and, with low-impedance wet-sensors, is an appropriate high-water mark to gauge our system by.

Lastly, we discuss the impact of system accuracy on system size, weight, and power (SWaP), an

absolutely critical set of constraints that must be met and aggressively reduced for any system

intending deployment within the military arena.

5.4.1 EEG Data Accuracy

In order to validate and quantify the quality of the EEG data collected by the system, two

separate experiments were performed. First, a common test that novel EEG systems often use

to validate their data is performed: a subject is instructed to hold their eyes open for a period,

closed for a period, and open for a period again. Holding the eyes closed is known to place the

brain’s visual cortex into a synchronous idling phase, where oscillations within the α-band (from

8 − 13 Hz) EEG rhythm increases in power. The α-rhythm is visible in the raw EEG signal’s

power spectral density (PSD), constructed from its Fourier transform. Holding the eyes open will

desynchronize this α-rhythm as the visual cortex again returns to the task of processing incoming

visual information. Further, blinking should be clearly seen in frontal EEG recordings. The eyes



97

(a) Average-case accuracy. (b) Best-case accuracy.

Figure 5.7: Classification accuracy vs. EEG channel count for the prototype Soldier-borne EEG
and physiological monitoring system as compared to a commercial 14 channel wet-sensor wireless
EEG headset.

opening adds positively to the EEG signal, while the eye closing motion causes a negative swing. A

blink provides the combination of the two in time. Shown in Figure 5.6, power in the α-band can

clearly be seen to correlate as expected with both eyes open and eyes closed scenarios, indicating

the system in fact is reading valid EEG data, generated by the visual cortex. This particular data,

shown in Figure 5.6, was taken from the medial frontal parietal (FPz) channel location, which is

the furthest point on the scalp away from the visual cortex (occipital region at the back of the

head), yet we still can quite easily see the emergence of the α-rhythm.

5.4.1.1 2-Level Cognitive Test

The next experiment, used to actually quantify the quality of EEG data collected by the

system, compares a single subject’s EEG readings as they perform each level of a 2-level cognitive

test, where one level requires more cognitive effort than the other. We repeat the 2-level test with

our soldier-borne prototype system as well as the 14-channel commercial Emotiv system, the results

of which shown in Figure 5.7. The 2-level test used is adapted from [87], which originally presents a
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3-level test. In our work, we found that their 2nd level very closely matched the 1st level in difficulty,

and we therefore omit the 2nd level from our analysis and hereby refer to the original 3rd level as our

2nd level. The 1st level test follows an oddball paradigm’, where a subject must respond to a rare

event. A randomized succession of integers from 1 to 8 is presented to the test subject, where the

integer 5 is considered the oddball’ stimulus and all other integers the normal’ stimuli. The subject

is asked to press a key with both hands only when the oddball integer 5 is seen. Response time is

recorded and subjects are encouraged to try for both response accuracy and speed of response. The

2nd level in the cognitive test is a ‘backward digit span’ task, in which a subject’s working memory

needs to retain up to two of the previous stimuli in addition to the currently presented stimuli.

Randomized integers 1 to 8 are again used, and the subject is asked to press a key with both hands

if the current stimulus is equal to that of two stimuli ago. Again, response accuracy and speed of

response are encouraged from the testing subjects. Subjective reporting from the tested subjects

indicates that indeed the 2nd level task is considerably more difficult than the 1st level task.

The 2-level experiment elicits only subtle differences in the EEG data as compared with the

rather strong response of the α-rhythm from closing and opening the eyes, which can be seen visibly

in the data from Figure 5.6. To detect between level 1 and 2, we require the following offline signal

processing and machine learning classification flow. Work to migrate this flow from offline to online

processing is currently ongoing. A Wavelet transform is applied to the raw EEG signal, whereby

a set of Wavelet coefficient statistics are computed to form a reduced feature vector. This feature

vector is then used as input to a support vector machine (SVM) classifier which decides whether

the EEG data was generated while the subject was engaging in either the 1st or 2nd level cognitive

testing cases. The SVM classifier was previously trained using the portions of previously collected

data.

Figure 5.7 shows the results of multiple trials of the 2-level cognitive test taken with different

EEG channel counts for both the prototype system and a commercial 14-channel wet-sensor EEG

system (the Emotiv EPOC [89]). Figure 5.7(a) gives the classification accuracies as averaged across

multiple trials for multiple EEG electrode placement locations for each channel count. For example,
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Table 5.1: Tested EEG channel locations and montages for the prototype and Emotiv systems.

System
International 10-20
Channel Locations

EEG Montages

Prototype Cz, Oz, Fz, Fpz, T7, T8 Common Reference (Left ear)

Emotiv
AF3, AF4, F3, F4, F7, F8, FC5,

FC6, T7, T8, P7, P8, O1, O2
Common Reference
(Linked mastoid)

classification accuracies from trials leveraging {Fz, Oz}, {T7, T8}, or {Fpz, Cz} 2-channel EEG

montages were averaged together to yield an average accuracy of 93.0 percent for 2-channels of

the prototype, which is higher than the Emotiv’s 90.3 percent average for all its combinations of 2

channels. The channels used in all trials for both devices can be found listed in Table 5.1, however

listing all combinations of channels used to make data points for the Emotiv in Figure 5.7 is too

exhaustive to list here. Conversely, the prototype system was only tested using 1 or 2 channels,

for two reasons. Firstly, only 2 EEG channel PCBs have so far been fabricated, and secondly,

the classification accuracy from only 2 channels was found to already be very high. Figure 5.7(b)

shows the highest average score found for a single EEG electrode count and placement for both the

prototype and Emotiv systems. An average of 96.0 percent classification accuracy between levels 1

and 2 was possible using locations Fpz and Cz with the prototype device, while all 14 of Emotiv’s

electrodes yielded an average classification accuracy of 97.6 percent. This places the prototype

within 1.6 percent of the Emotiv system, despite having 12 less EEG channels and having the

additional disadvantage of using dry electrodes vs. Emotiv’s wet electrodes.

The Emotiv does, on average, did test slightly higher when single electrodes are compared

at the same scalp location; however, T7 and T8 were the only tested locations that were shared by

both systems and therefore we cannot say this is true generally. When channels are combined, the

Emotiv is disadvantaged due to the prototype’s flexibility to use scalp locations that the Emotiv

cannot. This is because Emotiv has fixed electrode scalp locations that do not provide any coverage

of the medial frontal and parietal cortex areas. The prototype EEG electrodes can be placed at

any scalp location. The prototype’s best results were shown to come from locations directly over

cranial sutures which reside medially above the frontal cortex, where most of the high-level cortical
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activity occurs for the 2-level cognitive testing. Cranial sutures are fissures in the skull wall, and as

such facilitate greater propagation of the EEG signal to the scalp area. We theorize the flexibility

to sample at these locations as a likely contributor for the prototype’s ability for high classification

accuracies with only 2 EEG channels. As medial frontal scalp areas suite the 2-level cognitive test,

other scalp locations may better suite seeing other types of neural activities and signatures, e.g.

PTSD and MTBI. A future task for this work is to explore more neural applications and identify

optimal scalp locations for reduced EEG channel counts while maximizing classification accuracies.

Then, a reconfigurable system could be developed that can be tailored in real-time to whatever

application of interest is most pertinent for the time.

Table 5.2: Mechanical Data for Advanced Combat Helmet.

Helmet
Shell Size

Length (in) Width (in) Height (in)
Weight
(grams)

Small 9.7 9.1 7.0 1344.2
Medium 10.3 9.3 7.0 1401.4

Large 10.5 9.5 7.0 1515.8
X-Large 11.0 10.1 7.0 1773.2

X-X-Large 11.7 10.7 7.0 1830.4

5.4.2 System Size

The limit for added size, or added volume, to the physical soldier helmet [91] due to an

integrated system is a relatively subjective parameter to set. A system’s ability to spatial dis-

tribute through the helmet allows the added volume to be better hidden and thus better tolerated.

Therefore, limits on size increase with the ability of a system to spatially distribute throughout the

helmet. Since the size SWaP limit is subjective by nature, we do not have a direct comparison to

make for inclusion with this report. However, suggestions in a recently released request for proposal

(RFP) for a system to integrate into the Soldier helmet place the size limit at below 0.5”×1”×3”

(a volume of 1.5 in3). The first iteration PCB for each EEG channel is 0.1”×1.08”×1.55” (a vol-

ume of 0.167 in3); which, if forced to keep all boards spatially together, could allow up to 8 EEG

channel boards while still satisfying this particular limit. Further, as shown in Table 5.2, moving
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Figure 5.8: System weight vs. Battery type vs. EEG channel count for the prototype system as
compared to a commercial 14 channel EEG headset. A black line indicates the suggested maximum
added weight to a soldier’s helmet.

from a Small to an X-Large in sizing alone increases a helmet by 1.3” in length and 1.0” in width.

Due to the modularity–and therefore high degree of spatial distribution–allowable by the prototype

system, the given subjective size SWaP constraint would be likely met.

5.4.3 System Weight

Any added system weight is of paramount consequence to the Soldier. Especially critical is

weight that is added to a soldier’s head which must then be supported for long periods by the neck.

Guidelines for acceptable added helmet weight are also somewhat unclear, although from Table 5.2

we see, again, just moving from a size Small to size X-Large helmet alone adds an additional 429

grams. In the same recently released RFP referred to in Section 5.4.2, a limit of 226.5 grams

was suggested. We represent this upper limit in Figure 5.8 as a black line to denote our system’s

maximum additional acceptable weight, as it is the lower figure of the two mentioned. Figure 5.8

shows the full measured weight of the prototype system (neglecting interconnect wiring weight as

it is–without knowing precise sensor placements–fairly difficult to estimate as well as being a very
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Table 5.3: Battery options and their associated weight and power characteristics.

Battery Type Manufacturer Rechargeable?
Battery

Weight (g)

Battery
Capacity
(mAh)

9V Alkaline Generic N 46.0 565
Li-Ion UBP002 Ultralife Corp. Y 24.3 919
Li-Ion UBBL23 Ultralife Corp. Y 95.6 4805

small portion of overall system weight) across configurations of 1, 2, 4, 8, and 14 EEG channels.

All channel configurations, as well as the 14-channel Emotiv system, fall below the weight limit set

in the recent RFP.

The prototype system was fitted with three separate power sources, eaching vary in both their

weight and energy capacity characteristics. The three comparison power sources are a common 9V

alkaline battery and two rechargable lithium-ion batteries from Ultralife Corporation, outlined in

Table 5.3. The 9V alkaline is included for comparison due to its low cost and highly availability.

Both lithium-ion batteries were chosen for comparison purposes based on their use in other fielded

systems, and their balance of high charge capacities in small packages. In examining how the weight

of the power source affects overall system weight, it is obvious that the Li-Ion UBP002 is the clear

winner with a lowest weight of 24.3 grams. If pushed to 14 channels, the Emotiv system is shown to

be lighter than the prototype system for all power source scenarios. This is noteworthy, considering

that the Emotiv system is not designed to be an embeddable device, and so its plastic casing adds

significantly to the weight. While this seemingly speaks negatively to the design of the prototype

system, we speculate that with further system maturity and miniaturization–especially in PCB

design–the prototype system would see great reductions in this metric. Additionally, as seen in

Section 5.4.1, we show that the 14 channels of the Emotiv system are in fact unnecessary and with

only 2 channels do an excellent job of offering high classification accuracies. Therefore, comparing

a 2-channel prototype system fitted with the lowest weight UBP002 against the Emotiv, we see

that we can achieve within 1.6 percent classification accuracy of cognitive workload at roughly 40

percent of the weight. Of course, cognitive workload may be a more or less easy to classify than,
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(a) System lifetime of the prototype system for the three battery options
listed in Table 5.3, for 1-8 EEG channels.

(b) System lifetime vs. system weight of the prototype system for the three
battery options listed in Table 5.3, for 1-8 EEG channels.

Figure 5.9: System power vs. system weight across configurations from 1-8 EEG channels.

say PTSD or MTBI, when using this particular EEG channel count and placement, and therefore

further studies will be required to identify the placement and channel count tradeoffs for accurate

detection of those specific disorders.
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5.4.4 System Power

The power consumption of a mobile or wearable system has repeatedly proven to be the most

critical SWaP component of the three. A system’s required energy storage also impacts the other

two SWaP components, size and weight, as any additionally required energy capacity translates into

added gear a soldier must carry with them on the mission. In the mobile scenario, opportunities

for power recharging are infrequent or otherwise non-existent. Missions are known to last 24− 48

hours in length, and any wearable system deployed with the soldier must be counted on to last for

at least this duration. While current wearable energy-harvesting techniques exist and could reduce

required battery capacities, at this time they are not efficient enough for reliance as a solitary power

source. Most recent energy-harvesting technologies only contribute power in the mW -range, and

unless the system operates in similar power ranges the tradeoff for their added size and weight

normally does not merit their use. With the above reasoning, we do not yet consider the addition

of energy harvesting in the current system prototype, however this may change in future work.

In Figure 5.9(a), we compare the total system lifetime reached with a full battery charge;

comparing across three different battery types, which are listed in Table 5.3. Depending on EEG

channel count, the prototype system was found to require from 18.8 − 51.1 mA while in full data

transmit mode and with aggressive duty cycling of the Arm Cortex M0 microcontroller and

Bluetooth radio. The power increases non-linearly with EEG channel counts, as an additional

EEG Channel PCB is needed for each added channel and the Arm Cortex M0 and Bluetooth

radio duty cycling suffers with increased time spent under data transmission. The Bluetooth radio

uses 30 mA while transmitting and 3 mA when idle, a tenfold difference. Therefore bursting data

transmission is an effective method of power savings, and we leverage this as much as is allowable

given the maximum data rate of 921 kbps and the allotment of bytes required to send all channel

and bio-sensor data.

Finally, we compare the impact of system weight on system battery lifetime. As previously

mentioned, system power–and therefore lifetime–is the most critical SWaP objective, however it
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cannot be optimized at the expense of a gross increase in system weight. In Figure 5.9(b), curves for

each of the three battery options found in Table 5.3 are contrasted for their impact on system weight

and lifetime across system configurations ε[1, 8] EEG channels. The optimal corner of this figure is

the top left, where system lifetime is maximized and system weight is minimized. We see that the

Li-Ion UBP002 is still the desired battery choice as its curve most closely fits in the optimal corner

of the figure. In Section 5.4.1, the 2 channel configuration was identified to be suitable for cognitive

workload identification, and for the UBP002 curve at 2 EEG channels a system lifetime of 38.81

hours is achievable. Remembering that a soldier’s mission can last from 24 to 48 hours, we find

that the system under this configuration lands at about the middle of this range. 48.2 hours and

32.5 hours of lifetime are achievable for 1 and 3 EEG channels, respectively. These metrics include

continuous and uninterrupted EEG, humidity, temperature, and accelerometer sensor recording

and wireless transmission to the Android smart phone carried by the soldier. In an fielded system,

it would be likely that the accelerometer could help determine when the soldier is still enough for

a reading to reduce the motion artifact in the EEG data. This irregular ‘duty cycling’ would likely

drive power usage down considerably from the figures reported here. So, while room is left for

improvement, the average mission would likely be covered and certainly so if the accelerometer

were leveraged as intended.

5.5 Further Military Applications

The DoD is looking for solutions that allow them to monitor and assess a soldier’s state of

health (mental and physical) during both training and operational deployments. Such monitoring

would allow military leadership to proactively assess and trend a soldier’s well being, possibly

leading to changes in Training, Tactics, and Procedures (TTPs). Found improvements could reduce

military healthcare expenditures in addition to increasing productivity and effectiveness on the

battlefield. Such a capability will require the analysis of data across multiple soldiers and missions,

both in training as well as actual combat scenarios.
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5.5.1 PTSD/MTBI Detection and Monitoring

To solve this problem, we have proposed leveraging the latest advances in affordable EEG

sensor systems with power-efficient mobile signal processing algorithms to develop Brain Computer

Interface (BCI) technology that can be integrated with the warfighter’s mission. In addition, we

propose a total systems integration to create an end-to-end soldier state of health system that

processes, collects, disseminates, and stores the soldier state of health data. Such a system would

answer the real problem the DoD is trying to solve by allowing for long term analytics of the affects

of TTPs on a soldier.

If we achieve the proper balance between power, size and detection accuracy then we provide

a solution that can link the soldier’s neural communication pathways with the mission time-line.

An Enterprise Architecture can be used to collect and store each soldier’s data. Data Mining and

Analytic techniques could be applied to the vast data store to detect and predict events that put

the mission at risk and the soldier’s long term mental health at risk.

In a 2010 U.S. Department of Veterans Affairs study [86] researchers showed Magnetoen-

cephalography (MEG) can detect post traumatic stress disorder (PTSD) above 95 percent accu-

racy. Of course this study was done after the onset of PTSD and with the use of very limited and

expensive resources. Our proposed EEG devices and architecture would provide the opportunity

to collect both training and operational brain activity for all soldiers. This data could be used to

identify and alert the early onset of PTSD.

A repository of EEG data collected under operational conditions could enable great improve-

ment to TTPs. EEG data collected under both training and operational scenarios would lead to

significant changes in rules of engagement. For instance, a leader or individual soldier could gauge

the level of current cognitive workload and mental fatigue to determine if they can speed up or

need to slow down an engagement. Such otherwise unavailable information could save lives as well

as provide critical insight on when to apply deadly force.
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5.6 Chapter Summary

In this work we have developed a prototype device to enable a wearable Soldier-borne phys-

iological and cognitive monitoring system to detect the cognitive workload of the subject. We

have outlined a software framework for enabling EEG capability in 3rd party applications for direct

in-the-field neurofeedback purposes, and tested the device with a 2-level cognitive workload task

using machine learning signal processing techniques to achieve a 96 percent detection accuracy

with only 2 EEG electrodes. The prototype system’s size, weight, and power have been compared

and the relationships between each explored. As compared with a commercial 14-channel wet elec-

trode wireless EEG headset, the prototype system has been found to compare favorably in required

channel count, detection accuracy, and system weight.

The future work of this system will focus on improving data fidelity through improved elec-

trode design (e.g. non-contact electrodes), explorations into automated system tuning for improved

detection accuracies of multiple cognitive states and/or pathologies, and system integration into an

actual military-issued Advanced Combat Helmet. Motion artifact handling, such as leveraging the

accelerometer to drive sampling windows, will help drive down power while potentially increasing

detection accuracies. Finally, we plan improvements in signal processing algorithms for real-time

detection, as well as work to identify optimal EEG channel locations for early identification and

monitoring of PTSD and MTBI; a potentially revolutionary impact for the soldier.



Chapter 6

Long-Term Energy-Efficient Wearable Gait Analysis for Running

Running is the number one participatory sport. It is estimated that there are over 200 million

regular runners in the world [92, 93]. Runners have a yearly injury rate of 50%–70% [94]. There

is a consensus among physiologists that poor running form has a major impact on injury rates.

Analyzing and improving running form can reduce injury rate and can also help runners to improve

performance.

Sports physiologists and coaches have studied running form for over a century [95]. Quan-

titative assessment of running form is mostly constrained to the laboratory environment. Sports

physiology labs are commonly equipped with high-speed video cameras. To perform a test, markers

are attached to various reference points on the runner’s body. Calibration while standing is then

performed. The test subject finally runs on a treadmill, while the 3D trajectory of each marker

is determined [96]. This type of analysis has been limited to small-scale research studies and the

support of elite athletes, due to the high equipment cost, the need of a special laboratory envi-

ronment, and the lengthy setup and post processing time. The data collected is of limited time

duration and is collected in a static and controlled environment. Long-term running form effects,

such as what occurs over the course of training plans lasting days, weeks, and months, and effects

due to a runner’s negotiation of natural outdoor terrain and weather are not captured.

Economical MEMS inertial measurement units (IMUs), such as accelerometers and gyro-

scopes, are widely used in mobile phones and are able to accurately sense motion, tracking the

acceleration, velocity, and position of the human body. These technologies enable low-cost wear-
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able gait-analysis [97, 98, 99, 100]. However, it is challenging to implement compact, accurate

IMU-based gait analysis systems that both work in real time and have long battery lifetime. Real-

time operation, and therefore real-time user feedback, enables runners to learn from and “feel”

the result of form changes on-the-fly in-situ. To encourage maximum data collection and runner

adoption, Gazelle must require no intervention or maintenance from the runner, such as frequently

changing or charging of the battery.

Energy efficiency is a foremost concern for wearables because their compact form factors leave

little space for large batteries. Compared with mobile phones, which are typically equipped with

batteries storing thousands of mAh of energy, the batteries used in wearables generally only have a

few hundred mAh of energy capacity. In addition, while people typically charge their smart phones

everyday, the expected battery lifetime for wearables ranges from weeks to months. Overall, the

energy budget for wearables is orders of magnitude smaller than that of mobile phones.

The energy consumption of mainstream economical MEMS IMUs sensors, although appropri-

ate for mobile phones, is not suitable for ultra-compact wearables. Specifically, economical MEMS

IMUs sensors have high active and/or idle currents. For instance, mainstream MEMS gyroscopes

have active currents in the mA range, which would limit the battery lifetime of a wearable to a few

days. More importantly, the power consumption of MEMS IMUs sensors is a function of sampling

frequency. As shown in Figure 2.2, the active current of an accelerometer may increase by over an

order of magnitude at high sampling rates. High-precision gait analysis potentially requires a high

data sampling rate, imposing high computation and energy overheads; this is the primary barrier to

wearable devices supporting high-precision running form analysis. There is need for energy-efficient

sensing and analysis solutions to accommodate economical MEMS IMUs sensors technologies, yet

providing high-precision gait analysis at runtime.

This chapter presents Gazelle, a wearable gait analysis system with the goal of delivering

both short and long term quantitative understanding of personal running form to all runners,

helping people run faster, longer, and safer. Gazelle is compact in size, lightweight, and equipped

with a new sparse adaptive sensing (SAS) algorithm, which greatly reduces data sensing and analysis
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overhead, yet maintains high gait analysis accuracy. The proposed algorithm is motivated by the

fact that runners tend to maintain a consistent running form across many strides, so that sparse

sensing at lower sampling rates can still capture the targeted gait features. Furthermore, the sparse

sensing process can be adaptive, i.e., we can vary the data sampling rate within a detected stride

by predicting where the critical stride profile features exist in time, further reducing the number of

data samples needed for accurate runtime gait analysis. Our experimental study shows that SAS

can reduce the data sensing and analysis overhead, hence the energy consumption, by 73% while

maintaining 95% accuracy. This allows Gazelle to have a small form factor, with a total weight of

less than 8 grams, yet offering over 200 days of use on a standard coin-cell battery.

This work makes the following contributions:

• The design of Gazelle, a wearable system that is compact in size, lightweight, and highly

energy efficient for long-term, online running form analysis;

• The design of the sparse adaptive sensing (SAS) algorithm, which exploits the sparsity and

intra-variability of the running profile to select sampling points adaptively in time, thus

reducing energy consumption yet still maintaining high accuracy;

• Real-world evaluation using in-lab experiments and pilot studies with runners during day-

to-day training and racing, including our study of eight top professional and amateur

athletes using Gazelle during the Kona Ironman World Championship race.

The rest of the chapter is organized as follows. Section 2 reviews prior work. Section 3

presents an overview of the Gazelle system. Section 4 validates our gait analysis approach as com-

pared with a laboratory motion capture gait analysis system. Section 5 describes our SAS gait

analysis design, especially the sparse adaptive sensing algorithm. Section 6 presents the experi-

mental results and pilot study results. Finally, Section 7 concludes the work.
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6.1 Related Work

Sports physiologists and coaches have long been studying running form and its impact on

running performance and safety. High-speed video camera systems and floor-mounted force plat-

forms have been the de-facto gait analysis equipment in sports physiology laboratories and have

effectively supported running locomotion research [96, 101, 102, 103, 104, 105]. The limitations of

such systems include high cost, time-consuming operation, and their use is confined to the indoor

lab-testing scenario. Major sports brands have also developed pedometer-based wearable solutions

to help people run better [106, 107, 108, 109]. Gazelle offers similar long battery lifetime along

with much more detailed and comprehensive gait analysis.

Recently, researchers have been using wearable sensing technologies to facilitate in-lab run-

ning gait analysis or out-of-lab gait studies [97, 98, 99, 110, 111, 112, 113, 114]. Several wearable

gait analysis prototypes have been developed using IMUs, and data analysis algorithms (e.g., based

on support vector machine and principle component analysis) have been developed. These projects

mainly used the wearable devices for data collection, with post-processing analysis and feature ex-

traction done offline. There were few studies investigating the power consumption of an IMU-based

gait analysis system, which showed limited battery lifetime of only a few days [99].

Existing studies with adaptive sensing concepts generally use very coarse grained methods.

One study focused on reducing the power consumption for a gait measurement system (GMS) using

the switch between sleep mode and active mode of the IMU and RF module [115]. A major issue

gone unaddressed was the continuous high average power consumption of the active mode, i.e., the

MCU’s continuous high frequency data sampling and data processing, and the IMU’s continuous

high frequency operation. These studies optimize the sensing power consumption based on context

recognition, e.g., detecting the continuity of activity states, using lower sampling frequency or

switching sensors when a user is static or has low motion like sitting or walking, and then switching

to higher sampling rates for highly dynamic motion like jumping or running [116, 117, 118]. While

our work also utilizes activity state transition for power optimization, we further reduce power
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consumption by leveraging the consistency of strides and the variability within each stride while

in the running activity state. Our work is enabled through analyzing the running signal variability

locally and globally, and adapting to it opportunistically.

Various model-based theoretical analysis has been conducted in signal processing and wireless

communication [119, 120, 121, 122, 123]. These work utilized the sparsity of the signal, and the local

signal time-frequency variance to minimize sampling overhead. For example, compressed sensing

[119, 120, 121] does sparse, random sampling based on the sparsity of a signal in a sparse domain

(e.g., frequency domain) though the signal may not be sparse in the time domain. As a result,

though these work were used in wearable sensing devices, only the sensing part can be executed

on the wearable device, whilst the sampled data must be sent out to mobile phones or PCs with

the high computing capability needed for reconstruction and analysis. The authors of [122, 123]

proposed a time-domain adaptive sampling framework to predict the next sampling point based

on historical sampled data and therefore reduce the power overhead for signal re-construction.

However, though running is a relatively consistent motion from stride to stride, the in-stride signal

is non-deterministic, changes quickly, and varies across runners. It is therefore not practical to

build a generic running signal model to predict future samples. On the other hand, the in-stride

signal does follow a periodic running phase, which makes our SAS method possible without the

prerequisite of a signal model.

To the best of our knowledge, Gazelle is the first wearable solution for online gait-analysis

with a primary focus on energy optimization driven by adaptive detection and consideration of the

sparsity, repetition, and predictability of human running. Gazelle works in realtime out in the real

world, and its performance and energy savings have been demonstrated through extensive in-lab

experiments and outdoor use by real runners.

6.2 Gazelle System Design

The Gazelle wearable system architecture is illustrated in Figure 6.1. It consists of (1) a

system-on-chip with a 16 MHz low-power ARM Cortex-M0 and BLE/ANT+ wireless interface, (2)
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Figure 6.1: The Gazelle wearable sensor and system architecture.

a 9-axis high-precision, high-power MEMS IMU suite with accelerometer, gyroscope, and mag-

netometer, (3) a standalone ultra-low-power, low-precision accelerometer, (4) an ultra-low-power

watchdog timer, (5) a system power management unit, and (6) a standard CR2032 225 mAh coin-

cell battery.

With a form factor of 2 cm×3 cm×1 cm and less than 8 grams of total weight, Gazelle can

be easily worn on different parts of a user’s body, such as the chest, ankle, foot, or elsewhere. As

shown in Table 6.1, depending on the specific worn body location, different running features can

be obtained. Gazelle’s BLE/ANT+ wireless interface, enables communication with a sport watch

or mobile phone, which can provide voice, visual or haptic running feedback.

6.2.1 Hardware

Processing and Communication: With form factor being a primary design driver, minimiz-

ing PCB size and power consumption is a first order consideration in Gazelle’s hardware design.

The nRF51422 is a System-on-Chip (SOC), equipped with a 32-bit ARM Cortex-M0 CPU and

a 2.4 GHz ultra-low power RF front end. The RF front end supports concurrent Bluetooth Low

Energy (BLE) and ANT+ protocol operation. The nRF51422 allows on-board data processing
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Table 6.1: Key Running Form Metrics

Metric Definition Chest Hip Foot Ankle Wrist

Stride Time Duration of a stride Y Y Y Y Y
Cadence Number of strides per minute Y Y Y Y Y
Ground Time Duration of foot-ground contact Y Y Y Y N
Impact Peak Peak acceleration during landing Y Y Y Y Y
Vertical Oscillation Amount of bounce up and down Y Y N N N
Forward Velocity Forward velocity during take-off Y N Y N N

and enables multi-platform (i.e., ANT+ Sport Watches & BLE Mobile Phones) data sharing. In

addition, the nRF51422 provides a flexible power management unit that can be used to further

minimize power consumption. For example, depending on the user’s usage pattern, Gazelle can

switch between different states (e.g., idle or active). Subsequently, the CPU can be put in either

ON mode or OFF mode (600 nA at 3 V OFF mode, 2.6µA at 3 V ON mode with all peripheral

blocks in idle mode).

Sensing: Measurement timing resolution (i.e., accuracy) and flexible sample rate control (i.e.,

power savings) are the two main driving factors in the design of the sensing hardware. Based on

our studies of runners’ walking and running signals, the maximum walking acceleration is within 8 g,

while running acceleration can reach 16 g, which occurs when the foot strikes against the ground.

We chose the MPU9250 IMU as the main motion sensing unit because it is compact yet meets

Gazelle’s sensing precision requirements. The MPU9250 includes an accelerometer, gyroscope,

and magnetometer, supporting flexible individual sensor mode selection (i.e., standby, on/off), and

quick adaption to changes in sensor sampling rate. However, one drawback of the MPU9250 IMU

is the high power consumption, e.g., 400µA for the accelerometer in normal mode and 3 mA for

the gyroscope. Therefore, we added an ultra low power, lower accuracy accelerometer whose power

consumption is two orders of magnitude less than that of the MPU9250 IMU. The ADXL362

(3µA at 400 Hz and 1.1µA motion activated wake-up mode) is used to detect user status and run-

ning form change events. The information gathered from the ADXL362 drives the configuration
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of the high power IMU. This control process is discussed in more detail in Section 3.2 and Section 4.

In addition to processing, sensing, and communication, 24/7 reliable operation is needed.

Most of the time the system is idle in the OFF mode, and it continuously monitors the user’s

motion to trigger system wakeup. The nRF51422 has an internal watchdog timer, but based on

our testing, it was operational only in the higher current ON mode. Therefore, an external ultra

low power 100 nA watchdog timer, the PCF2123, is incorporated to ensure system health while

keeping accurate system time.

6.2.2 System Workflow

Gazelle’s software is built on top of the nRF51422 ’s wireless protocol stack and SDK, taking

less than 35 KB of flash memory. The software enables microsecond-resolution coordinated event-

driven streaming operation, including system model checking, error handling, the operations of

sensors, data processing, data storage, and wireless communication.

The Gazelle IMUs have built-in features to detect motion events, freeing the microprocessor

from needing to actively read and process sensor data. For example, the ultra-low-power, lower-

accuracy accelerometer ADXL362 used in Gazelle can sample data and alert the microprocessor

only when the acceleration has exceeded a predefined threshold for a predefined length of time.

The microprocessor can keep track of time while in OFF mode between interrupts by reading the

elapsed time of the watchdog timer. The microprocessor can dynamically change the threshold and

time window in real-time. Taken together, an effective yet extremely low-power finite state machine

classifier can be constructed. A simple rule-based approach can be used to classify user motion

activity. To classify a walking/running pattern, the microprocessor can first configure the sensor to

interrupt on a high-acceleration event, such as the impact due to a user’s ground strike. Then, the

microprocessor can reconfigure the sensor to look for a lower acceleration event, the toe push-off,

to occur after a minimum expected time duration, i.e., the time the foot spends on the ground.

Appropriate time window durations and acceleration thresholds are tuned with walking/running



116
Chest Foot Pelvis Pelvis Foot

Vertical (cm)

Sagittal (cm)Frontal (cm)

Vertical (g)

Sagittal (g)Frontal (g)

Figure 6.2: Example three-dimensional time-series running motion traces as captured by Gazelle
from different locations around a runner’s body.

datasets representing the majority set of walkers/runners.

When the user’s running motion is detected by the system’s low power classifier, the sensing

hardware is reconfigured to capture running signals in high resolution. Captured running fea-

tures are used to drive the sparse adaptive sensing (SAS) algorithm which 1) drives real-time IMU

reconfiguration while running, and 2) constructs running metrics on board. Gazelle’s wireless com-

munication with either a sport watch or mobile phone is also triggered which allows the streaming

of computed running form results to the user for on-the-fly feedback and post-run analysis.

The rest of the chapter will focus on the proposed SAS algorithm to enable energy-efficient

high-resolution running form sensing and analysis.

6.3 Mobile Gait Analysis

Gait analysis is used to quantitatively assess human locomotion. Running and walking mo-

tions are periodic. Stride by stride, force is produced by multiple muscle groups propelling the body

forward and upward, while maintaining body kinematic stability. Gait can be broken down into

a repetitive series of strides. A set of kinematic metrics can be identified and measured, and then

the musculoskeletal functions can be quantitatively evaluated. In this section, we demonstrate that

the Gazelle sensor system can capture such metrics with high accuracy when compared with tradi-
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tional laboratory high-speed video camera systems. We then motivate the sparse adaptive sensing

(SAS) algorithm, by identifying those features intrinsic to running that uncover opportunities for

significant reduction of energy consumption without a significant impact on accuracy.

In a high-speed motion capture laboratory, a runner is outfitted with infrared reflectors at

points of interest around the body. The motion of each measured point exhibits six degrees of

freedom – three degrees of freedom for translation and three degrees of freedom for rotation. The

six degrees can also be measured using MEMS based accelerometers (for linear acceleration as) and

gyroscopes (for angular velocity rs). Gazelle performs data fusion using linear and angular infor-

mation to construct three-dimensional motion paths in the physical reference frame. Specifically,

using Quaternion representation, the attitude of an object in a three-dimensional space is described

using q, a four-parameter vector.

q̇ =
q

2
· [0, ωx, ωy, ωz], (6.1)

where ω is a function of the body angular rates. After the object attitude is obtained, the acceler-

ation ap in the physical reference frame can be calculated as follows:

ap = qasq̊, (6.2)

where q̊ is the complex conjugate of q. A high-pass filter based gravity removal operation is then

applied. Next, the velocity v and position p can be calculated using time integration. Figure 6.2

shows examples of three-dimensional running motion time-series traces as captured by Gazelle when

placed at different body locations including the chest, foot, and pelvis.

6.3.1 Gazelle Sensor Accuracy Validation

To verify the Gazelle IMU sensor accuracy is sufficient for laboratory quality gait analy-

sis while in the field, comparative experiments were conducted in a sports physiology laboratory

equipped with eight Vicon high-speed motion capture video cameras. For each experiment, Gazelle

IMU sensor data was sampled at 200 Hz while the Vicon cameras captured images at 200 fps. The
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Figure 6.3: Comparison of running gait features captured by Gazelle and a gait analysis laboratory
using high-speed video camera system.

running gait metrics listed in Table 6.1 were each computed from both Gazelle sensor data and

motion capture camera data. Six runners participated in the experiments. Reflective markers were

placed on runners’ chest, pelvis, knees, ankles, and feet. Gazelle wearable devices were placed on

runners’ chests, with Gazelle configured to stream raw data from the higher power, higher accuracy

accelerometer of the 9-axis IMU (herein referred to as the high-power high-accuracy accelerometer

HHA). In existing IMU-based gait analysis work [110, 111, 124], the IMU sampling rate can vary

from 100 Hz to 200 Hz, and at most 2000 Hz, depending on the degree of subtlety the running-form

metric of interest has. In our experiments, the HHA was configured to a 200 Hz sampling rate in

order to sufficiently capture the key running-form metrics of Table 6.1.

The tests, conducted on a treadmill equipped with force plates, consisted of nine different

speed and cadence settings: the cross product of 5 mph, 6 mph, and 7 mph speeds with cadences

of 160 spm, 175 spm, and 190 spm. Each setting was tested for three minutes in duration with the

treadmill set for zero degrees of incline. Stride time, ground time and vertical oscillation obtained

from the high-speed camera system and force-plate were used to validate Gazelle’s gait analysis

accuracy.

The process to sense and compute each metric is summarized as follows.
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• Stride Time (ST): ST = TP
cur − TP

prev,

where TP
cur and TP

prev are the timestamps of the current and previous impact peaks, respec-

tively.

• Cadence (Cad): Cadence = 60 s/ST .

• Ground Time (GT): GT =
∫ Te

Ts
TdT , where a(T ) > 0

where Ts and Te are the start and end time of a stride, and a(T ) is the acceleration at time

T .

• Impact Peak (IP): IP = max|a(T )|, T ∈ [Ts, Te].

• Vertical Oscillation (VO):

V O = Heightmax −Heightmin,

where Height =
∫∫

T a(T )dT , T ∈ [Ts, Te].

• Forward Velocity (FV): FV =
∫ Te

Ts
a(T )dT .

To compare the running metrics computed from Gazelle data to those computed from the

sports physiology laboratory camera system data, the definition of accuracy in Equation 6.3 was

used.

Accuracy =
1

N

N∑
i=1

(1−
|M i

Gazelle −M i
camera|

|M i
camera|

)×100% (6.3)

where M i
GazelleandM

i
camera are the running metric for each stride i computed from data measured

by Gazelle and the laboratory camera system respectively.

Figure 6.3 shows representative results from two of the six study participants. This study

demonstrates that when compared with the high-speed motion capture system, Gazelle offers 99%

accuracy on average across all features at all nine test settings. Accuracy is lower for ground

time and vertical oscillation at some test settings, however is still above 95%. The results from

different settings illustrate that under changes of speed and cadence, the Gazelle wearable has

stable accuracy compared with the laboratory-grade Vicon motion capture system.
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Except when wearing Gazelle on the wrist, most of the features needed to compute gait

metrics can be obtained with high accuracy from many locations around the body, including the

chest, foot, hip, and ankle. However, the computation complexity required to extract robust

running metrics varies from body location to body location. For stride time, cadence, and impact,

the required computation is similar for different body positions. Ground time is difficult to isolate on

the foot or ankle, but is strong and consistently available from the chest. Ground time and vertical

oscillation are key metrics for evaluating a runner’s performance and running efficiency [125]. The

chest location closely approximates a runner’s central mass, and therefore is relatively a more

stable location than the foot to measure ground time and vertical oscillation, and therefore running

performance and efficiency. A chest sensor could be designed to be compatible with mainstream

heart rate monitors to improve user adoption. Taken together, the chest location is advantageous,

and as such this work considers running data when sensed from the chest location.

6.3.2 Opportunities for Energy Savings

Energy efficiency is of utmost importance when supporting online gait analysis with wearable

sensors. Having demonstrated that Gazelle is able to achieve high accuracy with regular sampling

of acceleration at 200 Hz, we now consider techniques to further reduce the number of samples, and

therefore relax the energy requirement, while maintaining high accuracy. The challenge ahead is

to answer the following two part question. How many samples are minimally needed, and how to

select the reduced sampling set?

Stride-by-stride Variance is Low: Running form typically changes gradually over time. Fig-

ure 6.4 shows a set of kinematic running form metrics captured over a 30 min run. This figure shows

that the key running form metrics all have fairly small variation from one section of the run to

another. As such, in real-world running, it is unnecessary to provide user feedback on each stride,

stride-by-stride. Instead, feedback on running form can be provided only when a form change is

detected, or at a user defined feedback interval. Therefore, it becomes possible to characterize the
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Figure 6.4: Running form metrics stability (left) and 3-axis running profile (right).

current running form by adding together many samples across many strides. Per stride, we can

significantly reduce the required data sampling rate, thereby minimizing energy consumption, yet

still maintain high running form analysis accuracy.

This motivates our design of sparse sensing (SS), which consists of three key steps: (1) detect

running form changes and group strides with similar running form together, (2) sparsely sample

data within the same stride group, and (3) reconstruct a single running profile from the sparse

samples within each stride group and compute the corresponding running form features. Since

the strides within each group have high similarity, the sparse samples we obtain from individual

strides allow reconstruction of one representative stride (i.e., the mean stride) for each stride group.

Intra-stride Variance is Predictable: Given known contextual information, such as overall

stride time, the significant event patterns within each stride are predictable in time. Figure 6.4

shows a running profile including raw acceleration, with integrated vertical height and forward

velocity on the right. We can see that, running acceleration is a periodic signal, and within one

period, the signal changes sharply at the impact peak, while the change is more gradual before and

after impact peak. The information content is more dense in time at the peak, and of lower density

before and after the peak. Therefore, more samples are needed at the peak, and less before and

after it, to capture sufficient information. The sampling rate can be adapted and changed based
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on the changing pattern of running acceleration. Additionally, as is illustrated in Figure 6.4, to

compute ST, GT, and IP, four key points need to be captured: two consecutive impact points and

two zero-crossing points. Therefore, instead of using a fixed high frequency sampling rate, we can:

(1) change the sampling rate adaptively by detecting and predicting the local variance for different

segments within a single stride; and (2) based on this prediction adaptively sample only the points

in time that are key to describe the selected running metrics of interest. The strategy for how to

adaptively capture those key points varies based on a user’s metric selection. For example, VO

and FV are computed though double and single integration of the acceleration signal, presenting

a more challenging scenario. Therefore the tradeoff between lost accuracy and power savings from

adaptive sampling when compared with the fully sampled acceleration signal must be identified

and minimized per metric.

This motivates our design of adaptive sensing (AS), and when combined with SS, sparse

adaptive sensing (SAS), which consists of three key steps: (1) detect running form intra-variability,

(2) adaptively adjust sampling rate based on the intra-variability, and (3) reconstruct a single

running profile from the adaptive samples within a stride and compute the corresponding running

form metrics. On top, a fourth step can allow a duty cycling of SAS in very stable running scenarios,

such as long distance road running. For instance, only every other step might be necessary to

be adaptively sampled with SAS, and the system can be powered down otherwise. Given the

observations above, we conducted theoretical analyses to understand the feasibility and potential

performance of both sparse sensing and sparse adaptive sensing, which we present in Section 6.4.

6.4 Sparse Adaptive Sensing (SAS)

This section describes Gazelle’s sparse adaptive sensing algorithm (SAS), used to enable ac-

curate and long-term gait analysis under day-to-day real-world conditions. Firstly, we examine the

theory behind SAS, before then detailing the SAS implementation. Lastly, we report our experi-

mental results, showing that SAS maintains high accuracy and performance even when delivering

an energy savings of from 73% to up to 99% over the continuous high frequency sampling case.
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Figure 6.5: Wavelet-based adaptive sampling
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6.4.1 Sparse Sensing (SS)

Since human running generates a periodic signal pattern, the acceleration signal can be

transformed and represented in a sparse domain, e.g., using the discrete cosine transform (DCT),

or wavelets. Compressed sensing (CS) theory [119] can be applied to estimate the sparsity and the

number of samples required to reconstruct the running profile with high accuracy. For example,

we can derive the minimum number of samples required to ensure that the running form metrics

computed from the reconstructed running acceleration signal achieve ≥ 90% accuracy compared

with that computed from the 200 Hz uniformly sampled running acceleration, as follows. Given a

single axis running profile acceleration signal S ∈ Rn, we can first decompose it using Daubechies

wavelets basis Ψ = [ψ1ψ2...ψn], with the following Equation 6.4.

S =

n∑
i=1

ciψi (6.4)

The coefficients vector c is sparse, meaning that most of the coefficients are close to zero. In

practice, these coefficients are set to zero while only a small portion of coefficients are preserved to

reconstruct the original signal using l1 norm optimization. Next, we must find how many coefficients

need to be preserved in order to reconstruct the signal. This upper boundary condition is derived

as follows. Assuming ΨS is k sparse, the number of samples required for reconstruction satisfies
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the following inequality,

m ≥ C · µ2(Φ,Ψ) · k · log n, (6.5)

where C is a very small positive constant and µ(Φ,Ψ) is the coherence between Φ and Ψ. In this

work, Φ is a random matrix drawn from a Gaussian distribution, and Ψ is constructed with columns

of the Daubechies wavelets basis such that the coherence of µ(Φ,Ψ) = 1. Then, C ·k · log n samples

are required for perfect signal recovery, and ccording to [119], about 4 · k samples are necessary.

From our analysis, 5% (10 Hz on average) of the n samples need to be preserved to achieve 95%

accuracy for running stride time, ground time, and cadence, while 50% (100 Hz on average) of

the samples are needed to achieve 90% accuracy for features including impact, vertical oscillation,

and forward velocity. We therefore find theoretical opportunity to reduce sampling and processing

energy overheads from 50% to 90% whilst maintaining 90% accuracy.

6.4.2 Adaptive Sensing (AS)

Measuring the intra-variability of a running stride is an essential step in sparse adaptive

sensing. Intra-variability is a measure of the point-to-point slope of a signal segment, i.e. how

slowly or quickly the slope changes along the time axis. In order to quantify intra-variability for

use to adaptively control sensor sampling rate, we use wavelets to analyze the adaptive sampling

rate required for different segments inside a running profile. As described in Equation 6.4 for

sparsity analysis, running acceleration can be decomposed into wavelets using the Daubechies

wavelet basis [126]. To estimate the sampling rate for a small segment of a running profile, the

first step is to do one level of decomposition of the signal S as below to get the approximate and

detailed wavelets coefficients clow and chigh [127],

clow = (S ∗ h) ↓ 2 (6.6)

chigh = (S ∗ g) ↓ 2 (6.7)

where g denotes a high pass filter and h a low pass filter [128]. After the first step, the detailed

coefficients vector is kept for another level of wavelets decomposition. The resolved detailed coeffi-
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cients vector is clow, which is quantized in the range of 200 Hz to find the adaptive sampling rates

that correspond to a single running stride’s intra-variability. In Figure 6.5, a single stride acceler-

ation profile, the estimated adaptive sampling rates over time, and linear reconstruction from the

adaptively sampled signal are shown. The sparsely sampled and reconstructed result can be seen

to visually correspond to the dynamic changes across the raw running stride profile. When applied

to our experimental dataset (Section 6.5), our wavelet-based sampling rate estimation shows that

in order to achieve 90% accuracy for the running form features computed from the reconstructed

signal, on average, only 80 Hz sampling rate is needed.

6.4.3 Limitations of CS and Wavelets

Our theoretical analyses from Sections 6.4.1 and 6.4.2 show that both sparse sensing and

sparse adaptive sensing can be utilized to reduce the sampling rate yet still maintain high accuracy

for running form analysis. However, the traditional algorithm design and implementation of both

compressed-sensing-based sparse sensing and wavelets-based sparse adaptive sensing are computa-

tionally intensive and require offline processing. Therefore they are not well suited for real-time

adaption to a real-world running signal, presenting key barriers to their use in a power-aware, low-

profile wearable system.

High computational complexity: According to [120, 121], the complexity for CS reconstruc-

tion ranges from O(M2N1.5) to O(log(k)MN). Although the sparse sampling can be optimized to

achieve only 5% CPU time for an 8 MHz wireless sensor node, the reconstruction required 30% CPU

time on an iPhone 3GS with a 600 MHz processor [120]. The root cause for this high complexity of

CS is the demand for a time-frequency domain transform, which is computationally intensive and

not suitable for low-power CPUs. For runners who do not carry mobile phones, it is impractical

to implement CS on an ultra-low power 16 MHz CPU based wearable device. However, where ran-

domly sparse sensing requires a complex reconstruction process, the wavelet-based adaptive sensing

reconstruction process can be as computationally simple as performing a linear interpolation, as
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seen in Figure 6.5. To fit the restrictions of mobile gait analysis, we must further lower our recon-

struction complexity.

Poor real-time adaptability: Another limitation of CS or wavelets based adaptive sensing in

gait analysis is that, when transforming the time domain information to a sparse domain, both

lack the ability to adaptively sample data based on real-time running variability and the real-

time variability of a user’s on-the-fly selection of running metrics of interest. For example, as

demonstrated in Figure 6.4, the designs of CS and wavelet based adaptive sensing are not able to

only capture key points for computing ground time to achieve optimal sampling rate when only

ground time is of interest to a runner. Moreover, to implement a wavelet-based adaptive sensing

method for real-time sampling, a generic estimated sampling rate model as shown in Figure 6.5

needs to be learned offline from a runner’s historical running dataset. Moreover, it results in a

static model that must used for every stride, which will not be optimal to capture key points to

accurately capture and describe running form changes in realtime.

6.4.4 SAS Algorithm Design

An alternative to conquer the two limitations in Section 6.4.3 is to conduct all the analysis

in the time domain. Note that CS and wavelets achieve high accuracy in the frequency domain; CS

captures the overall signal sparsity, and wavelets captures the fine grained intra-signal variability.

To accomplish comparable data sensing and analysis processing in the time domain, local variabil-

ity of the signal can be leveraged. In this work, we designed and implemented the SAS algorithm

using direct time-domain analysis to overcome the high computation complexity of time-frequency

domain transformation and reconstruction processes, meanwhile preserving real-time adaptivity to

different running metrics, thus enabling a novel and highly energy efficient long-term running form

analysis on the Gazelle wearable device.
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6.4.4.1 SAS feature selection

In order to identify the acceleration features of interest within a running stride, a first order

derivative (FOD) and slope ratio (SR) are used in SAS. FOD is used to measure the sharpness,

or steepness of slope, of a signal segment. SR is used to capture signal inflection points, and local

maxima and minima (from here forward we will refer to this group of three type of points as

inflection points for brevity). FOD and SR are described below by Equation 6.8 and 6.9. Together,

they can be used to sparsely reconstruct the overall signal.

FOD = |Samplei − Samplej | (6.8)

SR = | (Samplei − Samplej)/(i− j)
(Samplej − Samplek)/(j − k)

| (6.9)

lastS{start sample of a signal segment}
curS{end sample of a signal segment}
nxtS{new sample}
for all newSample from LLA do

Update nxtS ← newSample
Compute |lastFod|, |curFod|
Compute fod{based on next sample and last HHA sample}
sr ← max(curFod/lastFod, lastFod/curFod)
if sr ≤ sr threshold then

if |fod| > fod high threshold then
Get a sample from HHA
lastS ← curS, curS ← nxtS

else
curS ← nxtS

end if
else

if |fod| < fod low threshold then
curS ← nxtS

else
Get a sample from HHA
lastS ← curS, curS ← nxtS

end if
end if

end for

Figure 6.7: SAS algorithm procedure.
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Figure 6.8: Adaptive samples (Red) based on SAS and linear reconstruction of running acceleration.

Figure 6.6 demonstrates the intuition behind the two features, FOD and SR. FOD is sensitive

to sharp positive signal slopes (shown in purple box), which occurs during the landing phase in a

stride cycle. Capturing the impact points are critical when computing stride time, cadence, and

impact peak. FOD is not sensitive to gradual signal slopes, which occurs both after the impact

peak and during the time the body is in the air, for each stride in the cycle. However, the points

near zero-crossings (shown in the black box) and the inflection points (shown in the green box)

are key features to computing metrics like ground time and vertical oscillation. Thus SR is used

together with FOD to sparsely capture all necessary features to describe a running stride signal.
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Figure 6.9: Gait analysis accuracy comparison of compressed sensing (CS) and sparse adaptive
sensing (SAS).

6.4.4.2 SAS workflow

As described in Section 6.2, Gazelle is equipped with a low-accuracy, ultra-low-power ac-

celerometer (LLA) and a high-accuracy, high-power accelerometer (HHA). The LLA is left contin-

ually sampling throughout a run. Even though the LLA suffers from high noise, it offers sufficient

accuracy to continually detect the stride-by-stride timing structure and estimate the similarity of

strides with low latency. Also, even though the LLA sensor cannot provide absolute accuracy for

acceleration, velocity, or position related kinematic features, it offers sufficient relative accuracy to

detect changes of these features, thus the change of running form.

Using the samples obtained by the LLA, the local variance of the signal is estimated by first

order derivative (FOD) and slope ratio (SR). In our current work, the thresholds for FOD and SR

were experimentally derived to be optimal across our representative training datasets. The LLA

can then use this information to alert the MCU exactly when needed to turn on/off the HHA.

This then leads to different SAS implementation strategies for different running form metrics of

interest. For example, if stride time and cadence are the only metrics of interest, the LLA works
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in interrupt based motion sensing mode (1.1µA) to capture ST and Cad, which is suitable for a

pedometer or run pacing application. If all running metrics are required for an application, then

the LLA operates at a 400 Hz sampling rate (3µA), while the HHA is adaptively controlled to turn

on/off based on the value of FOD and SR. Figure 6.7 describes the adaptive sampling procedure

of the proposed SAS algorithm with all running metrics of Table 6.1 considered.

Using the samples captured by our SAS algorithm, reconstruction methods can be applied

to recover the running profile to compute all the running form metrics. Specifically, reconstruction

is necessary because vertical oscillation and forward velocity need single-integration and double-

integration of the single stride signal. In this work, we choose linear interpolation, which has low

complexity, enabling on-board reconstruction. Note that the LLA is also used to estimate stride-

by-stride running form changes based on stride time, and this information is used to group similar

strides together to further reduce sampling rate. For example, if every stride inside a group is

close to the mean stride and runner doesn’t require stride-by-stride feedback, essentially, only one

running stride needs to be processed to provide the running form metrics. However, as we will

show in Section 6.5.2, the actual amount of energy saving depends on a runner’s consistency, which

varies by the experience and fitness of a runner.

6.5 Evaluation

To evaluate the energy efficiency and accuracy of the Gazelle wearable system for long-term

online gait analysis, we conducted both in-lab experiments of the SAS algorithm and in-field pilot

studies.

6.5.1 In-lab Experiments

For the in-lab algorithm validation, we first compared the accuracy of our proposed SAS

algorithm with that of the compressed sensing (CS) algorithm. In the experiment, ten 30 minute-

long running datasets from ten runners were recorded on an outdoor track. On average, each

dataset has 4500 strides. Each runner wore a chest band with the Gazelle device attached to the
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Figure 6.10: Stride stability vs. energy savings for eight different runners in the Kona Ironman
World Championships.

band in the center front location.

The HHA sensor was configured to 200 Hz and both real-time running form metrics and

raw acceleration signal were streamed to a mobile phone for post algorithm validation. The key

running form features: stride time, ground time, impact, vertical oscillation, and forward velocity

were computed as a comparative baseline from the raw data sampled from HHA over the entire

running test. The set of key features were re-computed by the CS and SAS algorithms. To

determine the general tradeoffs between sparse (adaptive) sensing rates and energy savings, we

computed the average accuracy using stride-by-stride running form metrics, which did not include

the added benefits of grouping similar strides together. The accuracy was defined in Equation 6.10.

Accuracyavg =
N∑

n=1

(1−
|Mn
{SAS,CS} −M

n|
|Mn|

) (6.10)

where M{SAS,CS} is the metric computed from a SAS or CS reconstructed signal, Mn is the metric

computed from a 200 Hz sampling. n = 1, 2...N is the stride index for a specific metric.

For CS, the sampling rate was fixed for each experiment; while for SAS, the sampling rate

changed dynamically and the average sampling rate was used for comparison with CS. Figure 6.8

shows the representative SAS results with linear reconstruction at different sampling rates. At

15 Hz, the reconstructed signal from SAS with linear interpolation can capture the stride-by-stride

timing structure very well. At 100 Hz, the reconstructed signal has higher than 99% accuracy com-
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Table 6.2: Maximum Energy Savings from Each Metric

Metric Sampling Rate Energy Savings

ST, Cad 10Hz, LLA only 99.0%
GT 15Hz 78.1%
IP 20Hz 75.8%
VO 25Hz 73.5%
FV 25Hz 73.5%

pared with original running signal. Different sampling rates were experimented with and reported,

ranging from 15 Hz to 100 Hz.

The energy saving was computed by Equation 6.11, where ESAS is the energy consumed by

Gazelle device with SAS, while E is the energy consumed without SAS method.

EnergySavings = 1− |ESAS − E|
|E|

(6.11)

Figure 6.9 compares the gait analysis accuracy between CS and SAS for different running

form features under different sampling rates of the HHA. We can see that SAS outperforms CS in

almost all the scenarios. For stride time, only 15 Hz is required to achieve higher than 95% accuracy

with 78.1% energy savings. For both cadence and impact, 20 Hz is required to achieve higher than

95% accuracy. And for ground time, vertical oscillation, and forward velocity, 30 Hz, 35 Hz, 40 Hz is

required to maintain higher than 95% accuracy respectively. Compared with our SAS method, CS

had comparable results for stride time and cadence from the accuracy perspective, however, CS’s

performance was worse for vertical oscillation and forward velocity, and didn’t obtain 90% accuracy

when sampling rate is at 100 Hz. The major reason is that CS failed to capture sharp inflection point

changes in the sparse domain, and after single or double integration, error accumulated. Overall,

a 25 Hz sampling rate is required for SAS to achieve greater than 92% accuracy for every running

metric and 95% average accuracy for all metrics, which corresponds to 73.5% energy savings, or

one order of magnitude improvement compared with other existed wearable gait analysis device,

all the while with an accuracy outperforming that of CS.

Additionally, in an actual usage scenario, runners may have different demands of running
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metrics, thus the maximum energy savings can vary for different metric subsets as summarized in

Table 6.2. For example, for stride time and cadence alone, the LLA active in interrupt-only mode is

sufficient to capture these metrics at a 10 Hz sampling rate, and the energy savings can reach 99%

compared with 200 Hz HHA. In future work, different usage scenarios can be studied. As shown,

different running metrics require a higher sampling rate to reach an accurate enough measurement.

Therefore SAS can be designed to adapt to different sets of running metrics to further minimize

the power consumption under various usage cases. In summary, our sparse adaptive sensing (SAS)

algorithm is energy-efficient and accurate for running form analysis and feedback, and provide a

solution for long term running form study, and a potential guide for other potential applications,

e.g. ECG.

Note that the accuracy and energy saving numbers above are for stride-by-stride running

form analysis. Further sampling rate reduction can be achieved by grouping strides with similar

running profile, which depends on how consistently the runner is running. Next, we further evaluate

the energy savings from runners with different experience levels based on pilot studies in real-world

running races.

6.5.2 Pilot Study

In addition to laboratory testing and outdoor track testing, Gazelle was used in the Ironman

World Championships in October 2014 Kona, Hawaii, the world’s premier Ironman race event.

In Kona, Gazelle monitored the marathon segments of two professional triathletes and six of the

world’s best athletes in their age brackets. This section will focus on reporting and analyzing

Gazelle’s results for the eighth athletes from this race. The focus of this pilot study was two-fold:

1) to test consistency of the metrics derived from the Gazelle wearable under the energy savings

with SAS achieved in real world running; and, 2) to understand Gazelle’s metrics’ overall usability

in terms of running form information representation when compared across some of the world’s

best triathletes under race conditions.
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Perform. Fatigue

Efficiency

Consistency

Race Q1
Race Q2
Race Q3
Race Q4

Pro Male

Am Male 3

Am Male 1 Pro Female Am Male 2

Am Female 1 Am Female 2 Am Male 4

Figure 6.11: Gazelle gait analytics for top professional and elite triathletes at the Ironman World
Championships in Kona, HI.

Energy savings in real world running: Stride-by-stride running-form consistency affects the

performance and the energy savings of SAS. As described in the previous section, across 10 runners

data collected during in-lab experiments, an average of a 15 Hz–25 Hz sampling rate was needed to

achieve over 90% accuracy for all computed running form metrics. Running-form consistency varies

among runners. Under the same stride time variance constraint, better running-form consistency

leads to larger number of strides per group, hence lower data sampling rate and better energy

savings. Figure 6.10 shows the number of groups and the number of strides per group for each

runner with 1% stride time variance. From this figure, Runner 1 shows the highest running-form

consistency or minimal stride-by-stride variance, which leads to the largest number of strides per

group, hence the lowest data sampling rate (1 Hz), and therefore largest energy savings (84.3%).

On the other hand, Runner 7 shows the lowest running-form consistency, requiring the highest

average data sampling rate (5 Hz), and resulting in the lowest energy savings (82.6%). Overall, an

average energy savings of 83.6% was achieved across these eight runners.
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Metric report consistency: Based on the high-level metrics shown Figure 6.11, the averaged

RunQuality scores for all eight runners are summarized in Table 6.3 along with each of their race

completion times. It can be seen that based on the race time, the runners can be classified into

4 run skill levels, and the RunQuality derived from the run form metrics measured by Gazelle is

highly consistent with runners’ actual race results, as well as the associated energy savings from

Gazelle. This comparison serves to validate the feasibility and methodology of Gazelle wearable

under real world use. The following equations describe the high-level metrics, which are constructed

post-race in terms of Gazelle’s reported gait-level metrics.

• Efficiency = 1
tair×pace , Efficiency estimates how much energy is spent to propel the runner

over the distance traveled.

• Fatigue =
tground

tair
, Fatigue is an estimate of how tired the runner is.

• Performance = Mean( tair
tground

), Performance is an estimate for how much energy a runner

is putting into the ground.

• Consistency = StdDev( tair
tground

).

Taken together, RunQuality is an aggregated measure of the four high-level metrics described

above. It is a simple unity weighted combination of the four, with the desirable set {Efficiency,

Consistency, Performance} having positive unity weight and the undesirable set {Fatigue} having

negative unity weight. The summation of the two sets together is a runner’s RunQuality metric.

RunQuality = Efficiency + Consistency

+Performance− Fatigue

In the weeks following the Ironman World Championships at Kona, athletes and their coaches

reviewed the gait analysis running form metrics data that were generated by Gazelle. The feedbacks
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Table 6.3: RunQuality scores vs race time

Runner RunQuality Race Time Level

Pro Male 90.3 2h:58m:58s 4
Am Male 1 85.6 3h:14m:12s 3
Pro Female 86.2 3h:21m:34s 3
Am Male 2 80.6 3h:41m:51s 2
Am Male 3 74.7 3h:41m:51s 2
Am Female 1 80.5 3h:52m:38s 2
Am Female 2 75.0 4h:07m:16s 2
Am Male 4 62.5 5h:02m:54s 1

we received were consistent among most athletes and coaches that Gazelle was easy to use and the

running form metrics were useful for both understanding the precise places in the race where

unexpected events occurred and for further improvement of the athletes’ running form and racing

strategy.

6.6 Chapter Summary

In this work, we have designed and developed Gazelle, a wearable system targeting long-

term, online running form analysis. Gazelle leverages small economical sensors to ensure low

cost, compact form factor, and light weight. To tackle the challenges associated with the high

energy consumption of high-precision motion sensing and analysis, we have developed an intelligent

sparse adaptive sensing (SAS) and gait analysis solution, along with aggressive energy management

techniques. Experiments using real-world running data demonstrate that, compared with uniform

sensing at 200 Hz, SAS can achieve 95% accuracy and 73% energy saving with only an 25 Hz maximal

sampling rate. As a result, together with the improvement in usable energy capacity due to lower

average current draw, Gazelle can increase the battery life by one order of magnitude using a small

coin-cell battery. Through our year-long pilot studies, Gazelle has been in use by over a hundred

elite and recreational runners during day-to-day training and various racing events, with satisfactory

results. Gazelle is in the process of being commercialized. his chapter has presented Gazelle, a

wearable gait analy- sis solution for running. Gazelle leverages small economical sensors to ensure
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low cost, compact form factor, and light weight. To tackle the challenges associated with noisy

sensor readings and high energy consumption, we have developed an intelligent sparse adaptive

sensing and gait analysis solution, along with aggressive energy management techniques. The

resulting system achieves 95% accuracy compared with high-end gait analysis laboratory equipment.

It is compact in form (2 cm×3 cm×1 cm), always-on, maintenance free, and highly energy efficient

with >200 days battery life using a small coin-cell battery. Through our year-long pilot study,

Gazelle has been used by over a hundred elite and recreational runners during day-to-day training

and various racing events, with satisfactory results. Several sports brands are interested in licensing

the Gazelle technology to deliver new running products.



Chapter 7

Conclusions and Future Research

This thesis explored opportunities to reduce energy consumption while upholding human

sensor device classification and reporting accuracy. The entire end-to-end human-borne sensing

platform, from the wearable sensor device, to the mobile device data aggregation layer, to the back

end cloud data storage for service delivery and personalized auto-analytics has been considered for

low energy consumption optimization. Energy efficiency improvements of up to 11X were found in

the cloud layer, on average 83.6% and from 73-99% found in the wearable layer, and improvements

of up to 47% when introducing intelligent collaborative assistance to the wearable device from the

mobile smart phone. This chapter summarizes the research contributions made in this thesis, and

then explores further avenues for extending the research work that has been presented.

7.1 Thesis Summary

The major contribution of this work is the design, implementation, test and evaluation in

controlled and real-world studies of a highly power-efficient, longterm mobile online gait analy-

sis system, Gazelle. Gazelle leverages adaptive power management techniques to perform highly

accurate gait analysis resulting in one order of magnitude improvement in energy consumption

with minimal impact to gait metric accuracy as compared with laboratory-grade equipment. Two

observations regarding human running gait drove SAS algorithm design. The fact that running

metrics change slowly with time, i.e. strides nearby other strides in time are extremely similar,

allows Gazelle to sparsely sample across many strides to create an archetypal “group” stride, up-
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dating with each new stride and creating a new group when sufficient stride timing differences have

been detected. Secondly, the fact that each running stride follows the same pattern of phases with

similar timing delay separation allows Gazelle to predict when to capture samples using the IMU,

and at what frequency for each known feature in the stride cycle.

A related work also using gait analysis as the target application (in this case, cadence detec-

tion), proposed a collaborative approach between the phone and wearable device so as to offload

some of the sensing workload, hence energy demand, from the wearable sensor. Compressed sensing

was used to sparsely sample the accelerometer signal. No processing was required on the wearable

device; it could simply send the sparse samples to the mobile device for signal reconstruction. More

energy is spent on wireless communication to send even sparse samples as compared with computed

cadence, however the energy saved from no longer needing to run an algorithm to compute the ca-

dence metric outweighed the extra energy. To solve the issue of BLE connections requiring periodic

data transfer even if no data payload is present, we proposed the idea of connectionless communica-

tion. Sensor data can be sent through BLE advertising packets, which can be event-driven instead

of timer driven.

A nondeterministic transactional parallel cross-layer optimization algorithm was introduced

in order to increase energy efficiency in VLSI CAD computing clusters and to eliminate the design

closure problem for a more efficient and cost-effective design cycle. The heterogeneous processing

power of super-scalar deeply pipelined multi-core CPUs and massively-parallel SIMT GPUs was

combined to concurrently drive high-level synthesis and physical floorplanning. Inter-layer ommu-

nication is normally done sequentially only on completion of either of the layers, however this thesis

proposed a new method to nondeterministically communicate between layers as both concurrently

executed their work. Information sharing allowed either layer to design with the other layer’s

current design progress in mind. Moves not helpful to the design status of the companion layer

can immediately be rejected, where in prior work they may be irreparably followed, requiring a

repeated design cycle. To take advantage of fine data granularity and therefore high parallelism in

the physical layer, a novel GPU floorplanner was proposed and implemented. The floorplanner can
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execute thousands of candidate floorplans at once, enabling a broader search of the design space,

and faster convergence to agreement with the high-level synthesis layer.

To enable in-situ long-term monitoring of electroencephalographic (EEG) signals, a modular

wearable EEG system was developed. The EEG electrode count could be expanded through the

addition of more electrode PCB modules. An evaluation was conducted on the size, weight, and

power (SWaP) of the system, across a range of electrode configurations and battery types. The

system was compared to a commercially available non-modular wearable EEG sensor system, where

electrode configuration was simulated post data collection in software. Accuracy was found to be

comparable with one electrode and slightly better with a two electrode configuration. Due to the

modularity, the system weight could be reduced by more than two times compared to the commercial

EEG system, whose weight does not change with configuration of more or less electrodes. Lastly,

three battery types were evaluated for discharge time versus average system current over system

weight for from 1 to 8 electrode configurations.

A novel augmented reality system leveraging the MEMs IMU, digital compass, and camera

found in smart mobile phones was proposed in order to find and recommend through augmented

reality healthier food items to grocery store shoppers. Pedometry was used to drive the augmented

reality video overlay placement as a shopper browsed the grocery store aisle. In order to establish

the initial location and reference frame of the shopper, a picture of a nearby food item was taken.

The image was sent to a cloud-hosted image recognition engine, and a location of that food item was

sent back to the mobile phone after cross-referencing the grocery store food item map stored on the

project server. Two methods for handling the Internet data requests and transfer were compared

for latency and energy cost. Grocery store shoppers were surveyed both in an online survey (104

participants) and after in-person demonstrations (15 participants) to understand the mobile AR

applications’ accuracy and usefulness. 93% of in-person demonstrations rated the system ≥ 4/5 in

overall performance, and 80% of survey participants thought the system would be very useful for

quick identification of healthy food items.
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7.2 Future Research

Moore’s law predicts an 18 month cyclical two times reduction in transistor area, which

continues until today. Battery chemistry improvements drive higher charge voltage capability,

increasing battery capacity and energy density. Both technology trends will naturally improve

battery lifetime in wearable devices as time passes by. In the meantime, there is more that we can

investigate.

Adding real-time learning to Gazelle’s SAS algorithm: The current SAS implementation

utilizes an offline data-driven model for the event-driven adaptation and control of a high-accuracy,

high-power accelerometer used to capture running gait metrics. The model was derived using the

collective running test data set whereby statically set thresholds for the first-order-derivative (FOD)

and slope ratio (SR) control features were derived. A natural extension to the existing work would

be to enable SAS to adjust both FOD and SR thresholds on-the-fly in order to fit sampling rate

and duration to the individual and their in-the-moment running gait characteristics. This proposed

work could further drive down power consumption compared to the current SAS implementation

due to adapting the model on-the-fly. A high-resolution sampling of one or more strides could be

taken at the start of the run, or periodically at very low duty cycle, in order to recompute a more

precise fitting of the FOD and SR metrics to the individual in realtime.

Add multiple Gazelle sensors around the body: In this thesis, Gazelle was either placed

on a runner’s chest, their pelvis, or on their foot–but data was not combined and fused together

when taken from multiple locations. Multiple sensed locations on the body could very well prove

to better capture the same metrics explored in this thesis, while at the same time likely opening

the door for more subtle measurements of human gait. For example, the sports physiology gait

analysis laboratory with motion capture camera system can construct a skeleton model of a runner,

modeling multiple joints motion in concurrent time. Bio-mechanical characteristics unique to each
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runners skeletal construction and musculature become visible to the system, and it is plausible that

given this information, a further tailoring of a run training plan may be developed and delivered to

the runner. Further, with more sensors placed and wirelessly communicating from around the body,

the opportunity for sensors to share their battery health levels, and, depending on the current user

need and system state, repartition the global sensing workload amongst themselves. The result is

an energy-aware, self-reconfiguring body area sensor network with augmented human gait capture

capabilities.
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