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Computing the Conjugacy of Invariant Tori for Volume-Preserving Maps∗

Adam M. Fox† and James D. Meiss‡

Abstract. In this paper we implement a numerical algorithm to compute codimension-one tori in three-
dimensional, volume-preserving maps. A torus is defined by its conjugacy to rigid rotation, which is
in turn given by its Fourier series. The algorithm employs a quasi-Newton scheme to find the Fourier
coefficients of a truncation of the series. We show that this method converges for tori of two example
maps by continuation from an integrable case, and discuss the scaling of computational resources
required for accurate computations. We demonstrate that the growth of the largest singular value
of the derivative of the conjugacy predicts the threshold for the destruction of the torus. We use
these singular values to examine the mechanics of the breakup of tori, identifying its onset with the
formation of “spires” or “streaks” in the local singular values on the tori. These are analogous to
the gaps in cantori of two-dimensional twist maps.
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1. Introduction. In this paper we will study families of maps fε on M = T2 × R of the
form

(1)
x′ = x+ Ω(z)− εg1(x, z, ε) mod 1,

z′ = z − εg2(x, z, ε),

where x ∈ T2 are period-one angles and z ∈ R represents the action, and (x′, z′) ∈ T2

represents the image point. Maps of this form arise in the study of many natural phenomena
including incompressible fluids [PF88, FO88a, CFP96], magnetic field lines [TH85], granular
mixing [MLO07], and celestial mechanics [LS94].

Invariant tori play a prominent role in the dynamics of maps such as (1). Most notably,
when ε = 0 every orbit lies on a two-torus Tz0 = T2 × {z0} on which the dynamics is simply
a rigid rotation, i.e., for each t ∈ Z,

(2) (xt, zt) = f t
0(x0, z0) = (x0 + ωt, z0), ω = Ω(z0);

such maps are integrable.
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We will assume that (1) is an exact volume-preserving map, i.e., that there exists a one
form S such that f∗

εα− α = dS with respect to the two form α = zdx1 ∧ dx2. Exactness is a
necessary condition for the existence of rotational invariant tori when ε ̸= 0. We say a torus
is rotational if it is homotopic to Tz0 . The rotational tori of (1) are fundamentally important
as they form barriers to transport: orbits that begin on one side cannot cross to the other
[FP88, App. B].

KAM theory [CS90, Xia92] guarantees the persistence of a Cantor set of rotational tori in
exact volume-preserving, near-integrable maps of the form (1), assuming that g1, g2, and Ω
are smooth enough, and the frequency map Ω : R → R2 satisfies a Kolmogorov nondegeneracy
assumption

rank(Ω,DΩ,D2Ω, . . .) ≥ 2.

The persistent tori have rotation vectors ω that are Diophantine,

(3) ω ∈ Ds =
{
ω ∈ R2 | ∃ c > 0 s.t. |p · ω − q| > c|p|−s, ∀(p, q) ∈ Z3 \ {0}

}

for some s ≥ 2. It is important to note that, unlike the Hamiltonian case, this theory does
not predict the persistence of a torus with a given rotation vector for a given map fε, but just
a Cantor set of Diophantine tori when ε is small enough.

Although KAM theory does guarantee the persistence of some tori for small ε, it does not
say anything about what happens when ε = O(1). John Greene [Gre79] developed the first
quantitative method to study the persistence of tori for the case of two-dimensional, area-
preserving maps. He conjectured that periodic orbits in the neighborhood of an invariant
circle should be stable; indeed, a sequence of periodic orbits should limit upon a circle only
if they remain stable in the limit. Conversely, if the limit of a family of periodic orbits is
unstable, then the invariant circle should no longer exist. This method is known as Greene’s
residue criterion [Gre79]. In [FM13], we extended this method to the volume-preserving
case; however, our generalization is only applicable to maps with reversing symmetries and
symmetric tori.

In this paper, we will compute the tori directly, rather than a sequence of approximating
periodic orbits. An advantage of this method is that the map need not be reversible. In
section 2 we describe a Fourier-based scheme, analogous to that developed for symplectic maps
by de la Llave et al. [HdlL07, HdlLS12, FdlLS09], to compute the embedding for an invariant
torus with given rotation vector in volume-preserving maps of the form (1). Although this
algorithm can be used to study invariant tori in any volume-preserving system, it is easiest
to apply to maps, such as (1), that have an integrable limit. Indeed, since the method is
iterative, it requires a good initial guess for a torus. The integrable tori at ε = 0 provide a
simple starting point for continuation.

Numerically, each torus is represented by an embedding k : T2 → M that conjugates
the dynamics to rigid rotation with a given Diophantine rotation vector ω; the particular
rotation vectors that we study are described in section 3. We will find tori for two examples:
the standard, reversible map studied in [FM13], and the well-known ABC map [FO88b], a
nonreversible system that commonly arises in fluid mechanics; see section 4.
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In either case, as ε grows, we will see that the conjugacy k appears to lose smoothness
as the torus nears destruction. To visualize this, we study the local singular values of the
3 × 2 matrix Dk in section 5. A point on a torus where the singular values are large is
strongly deformed under the embedding. We will see that the spikes in the singular values are
organized into spires or streaks that appear to correspond to the incipient formation of holes
in the torus, mirroring the behavior known to occur when invariant circles in area-preserving
twist maps are destroyed and replaced by cantori [Mei15].

We will show that divergence of the largest singular value of the matrix Dk can be used to
estimate the threshold for destruction of a torus, by analogy with norm-based methods used
for area-preserving maps [CdlL10a, CdlL10b, FM14]. In section 5.2 we exploit this divergence
to estimate the critical parameter, εcr, for destruction of a torus. For the standard, reversible
map, the close agreement between the two sets of results provides significant numerical evi-
dence of the validity of both the extension of Greene’s criterion developed in [FM13] and the
singular value method presented here. Computations of critical parameters are also given for
the ABC map. Since this map is not reversible, periodic orbits cannot be easily computed, and
thus applying Greene’s criterion is not practical. Our method does not require reversibility
so we are able to compute tori and their breakdown for a variety of parameters.

2. The quasi-Newton algorithm. In this section we obtain a quasi-Newton scheme to
find rotational invariant tori for a family of maps of the form (1). Although this algorithm
can be applied to arbitrary volume-preserving maps with codimension-one tori, we restrict
our focus to three-dimensional families of the form (1).

The method is based on a Fourier series expansion for the conjugacy to rigid rotation. To
guarantee convergence of these series we assume that fε is analytic. Moreover, as explained
more below, we suppose that the map depends upon a set of auxiliary parameters λ, denoting
the new map by fλ,ε, and assume that f is a C2 function of λ.

The goal is to compute an embedding k : T2 → M to a rotational torus (should one exist),
i.e.,

T = {(kx(θ), kz(θ)) | θ ∈ T2},

where the angle components, kx, are two dimensional, the action component, kz, is a scalar.
For a rotational torus, the angle components have degree one and the action component is
periodic:

k(θ +m) = k(θ) + (m, 0)T ∀m ∈ Z2.

The dynamics on the torus are assumed to have a given rotation vector ω, that is, its dynamics
are conjugate to the rigid translation Tω(θ) ≡ θ + ω,

(4) fλ,ε ◦ k = k ◦ Tω.

This is equivalent to the commutative diagram illustrated in Figure 1.
Note that solutions of (4), if they exist, are not unique: given a solution k(θ), then k(θ+χ)

is also a solution ∀χ ∈ R2. However, when ω is incommensurate, this is the only nonuniqueness
for continuous conjugacies.
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Figure 1. A visualization of the commutative diagram for automatic reducibility, and the iteration of the
tangent, (u1, u2), and normal, v, vectors by the linearization Df . The dashed parallelepipeds have unit volume.

Lemma 1 (see [FM14]). If k ∈ C0(T2,M) solves (4) for an incommensurate rotation
vector ω, then every other continuous solution of (4) for the same invariant torus is of the
form k(θ + χ) for some χ ∈ T2.

The auxiliary parameters λ in fλ,ε are needed in order to fix the rotation number of the
torus. The point is that when ε = 0, the image of the frequency map Ω in (1) is a curve
{Ω(z)|z ∈ R} ⊂ R2; thus in this case, only orbits with rotation vectors on this curve will exist.
To guarantee the existence of a torus with a chosen ω it is necessary to add a parameter to
the frequency map; we suppose Ω depends upon δ ∈ R in such a way that

(5) (z; δ) -→ Ω(z; δ)

is a diffeomorphism onto R2. One can view δ as a parameter that selects a particular curve
and z as a parameter that selects a point along this curve in order that Ω(z; δ) = ω.

To extend this to ε ̸= 0, let λ = (δ, p) denote the set of parameters, where the average
action,

(6) p =

∫

T2
kz(θ)dθ ≡ ⟨kz⟩,

represents the position along the image of the true frequency map. More precisely, for y ≡ z−p,
(1) becomes

fλ,ε :

{
x′ =x+ Ω(y + p; δ)− εg1(x, y + p, ε) mod 1,
y′ = y − εg2(x, y + p, ε).

However, we continue to use z as the action variable in our presentation rather than y. In this
case, the parameter p does not appear in the map, but, instead appears in the conjugacy:

(7) k(θ) =

(
θ
0

)
+

(
0
p

)
+ k̃(θ).
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By (6) and a choice of the shift in angle, we can assume that the periodic part of the conjugacy
has zero average: ⟨k̃⟩ = 0. This function is represented by a Fourier series

(8) k̃(θ) =
∑

j∈Z2\{0}

k̂je
2πij·θ

with coefficients k̂j = k̂∗−j ∈ C3.
The idea is that for every ω ∈ D2 and for small enough ε, there should exist parameters

λ = λ(ε) and a conjugacy (7) such that the map (1) has a torus T = k(T2) on which the
dynamics is conjugate to rigid rotation with rotation vector ω. This is the analogue of the
parameterization method developed for the symplectic case [HdlL07, HdlLS12, FdlLS09].1

Our goal in this paper is to compute these tori.

2.1. Automatic reducibility. To implement the iterative algorithm to find k, we begin
with a guess (k(θ),λ) that is an approximate solution of (4):

(9) fλ,ε ◦ k − k ◦ Tω = e.

The iteration then proceeds by assuming that there is a nearby conjugacy k+∆ that satisfies
(4) for a nearby map fλ+ζ,ε. Expanding (4) then gives (we drop the subscripts on fλ,ε for the
remainder of this exposition to avoid the notational clutter)

f(k(θ)) +Df(k(θ))∆(θ) +Dλf(k(θ))ζ − k(θ + ω)−∆(θ + ω) = O(∆2, ζ2),

where Df and Dλf indicate the derivatives of f with respect to the state variables and
parameters λ, respectively. Neglecting second-order terms, using (9), and reordering then
gives an iterative equation,

(10) ∆(θ + ω)−Df(k(θ))∆(θ) = e(θ) +Dλf(k(θ))ζ,

that, as we see below, can be viewed as determining (∆, ζ). If a solution is found, then k+∆
is an approximate conjugacy for the map fλ+ζ,ε in the sense of satisfying (9) with a new,
presumably smaller, error e. This new map and error can then be used to obtain a new
correction by solving (10) again.

We will see in section 4 that, in practice, the L2-norm of the error, ∥e∥2 goes to zero with
successive iterations, but not as fast as a classical Newton method. The reason for this is that
there are certain conditions that must be satisfied in order to solve (10). These solvability
conditions can be imposed by a proper choice of the parameter increment ζ, but it is consistent
with the iterative nature of our algorithm to implement them approximately.

The operator acting on ∆ on the left-hand side of (10) is called a cohomology operator in
[HdlLS12], and in order to solve (10), its right-hand side must be in the range of this operator.
Inversion of the cohomology operator on its range will then determine ∆ up to elements of the
kernel. However a direct inversion would be numerically expensive. It is better to partially

1While we developed the numerical algorithm independently, we learned during the preparation of this
paper that that Blass and de la Llave are also extending these ideas to the volume-preserving case [BdlL15].
Their research is focused on providing a rigorous justification of a method similar to ours.
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diagonalize the operator through a process called automatic reducibility in [HdlLS12]. The
idea is that there exists a change of variables ∆(θ) = M(θ)w(θ), so that in terms of the new
vector w(θ), (10) takes the form

(11) w(θ + ω)− S(θ)w(θ) = h(θ) +G(θ)ζ.

As we will see, M(θ) can be chosen to be a unimodular matrix, S(θ) a special upper-triangular
matrix, and

(12)
G(θ) = M−1(θ + ω)Dλf(k(θ)),

h(θ) = M−1(θ + ω)e(θ).

Since we do not invert the cohomology operator, this algorithm is not truly a Newton method,
hence we refer to it as quasi -Newton.

So that (11) is equivalent to (10) the matrices M and S must solve the matrix system

(13) Df(k(θ))M(θ) = M(θ + ω)S(θ).

This can be done by choosing the columns of M to be a set of tangent and normal vector fields
of the (approximate) torus T . Note that if k were an exact conjugacy, then differentiation of
(4) would give

(14) Df(k(θ))Dθk(θ) = Dθk(θ + ω),

which is the statement that the columns of Dθk = (u1 u2), vector fields tangent to T , are
invariant under f . For the implementation of the algorithm, k will never be an exact conjugacy,
thus it will only approximately satisfy (14). Nevertheless, we may use (14) in the Newton
iteration (10) incurring error only at second order. We assume that the guess for the conjugacy,
k(θ), is selected so these two tangent vector fields are uniformly independent:

(15) ∥u1(θ)× u2(θ)∥ ≥ c > 0,

where “×” is the standard cross product and ∥ · ∥ the Euclidean norm. Then the columns of
M are selected to be these two tangent vector fields and a scaled normal:

(16)

M(θ) ≡
(
u1(θ) u2(θ) v(θ)

)
,

u1(θ) ≡ Dθ1k(θ),

u2(θ) ≡ Dθ2k(θ),

v(θ) ≡ u1(θ)× u2(θ)

∥u1(θ)× u2(θ)∥2
.

Under the nondegeneracy assumption, M is well-defined, detM(θ) ≡ 1, and

M−1(θ) =
(
u2(θ)× v(θ) v(θ)× u1(θ) u1(θ)× u2(θ)

)T
.

Note that (14) then implies that (neglecting the error)

(17) Df(k(θ))M(θ) =
(
u1(θ + ω) u2(θ + ω) Df(k(θ)v(θ)

)
.
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Combining this with (13) shows that S = (ê1 ê2 s), i.e., the first two columns of S are trivially
the unit basis vectors. Moreover, because M is unimodular and f is volume preserving, the
determinant of (13) implies that S33 = s3 = 1 as well. Thus S is a special upper-triangular
matrix:

S(θ) =

⎛

⎝
1 0 s1(θ)
0 1 s2(θ)
0 0 1

⎞

⎠ = M−1(θ + ω)Df(k(θ))M(θ).

Performing the matrix multiplication on the right determines the last two components of S:

(18)
s1(θ) = u2(θ + ω)× v(θ + ω) ·Df(k(θ))v(θ),

s2(θ) = v(θ + ω)× u1(θ + ω) ·Df(k(θ))v(θ).

The three rows of (11) now yield skew coupled equations for the components of the vector
w,

w1(θ + ω)− w1(θ) = h1(θ) +G1(θ) · ζ + s1(θ)w3(θ),(19)

w2(θ + ω)− w2(θ) = h2(θ) +G2(θ) · ζ + s2(θ)w3(θ),(20)

w3(θ + ω)− w3(θ) = h3(θ) +G3(θ) · ζ,(21)

where s is defined by (18), and h and Gi—the ith row of G—by (12).
These three equations can be solved easily in Fourier space. Indeed, each is of the form

of a cohomology equation
w ◦ Tω − w = h,

that is diagonalized by Fourier transformation. It is not hard to see that if h is analytic and
ω is Diophantine (3), then w is analytic [Mos66] and its Fourier coefficients are

(22) ŵj =
ĥj

e2πij·ω − 1
, j ̸= 0,

provided that h satisfies the solvability condition

ĥ0 =

∫

T2
h(θ)dθ = 0,

i.e., that its average vanishes. Since the average, ŵ0 = ⟨w⟩, is in the kernel of the cohomology
operator, it can be chosen freely.

2.2. Solvability. Beginning with a guess for the conjugacy k and parameters λ, we com-
pute the error e from (9) and the vector fields u1, u2, and v from (16). Now G and the modified
error h can be computed from (12), and s from (18). At this point the cohomology equations
(19)–(21) can be solved using (22), under the assumption that the solvability conditions

(23)

⟨h1⟩+ ⟨G1⟩ · ζ + ⟨s1w3⟩ = 0,

⟨h2⟩+ ⟨G2⟩ · ζ + ⟨s2w3⟩ = 0,

⟨h3⟩+ ⟨G3⟩ · ζ = 0,



564 ADAM M. FOX AND JAMES D. MEISS

are satisfied. These equations illustrate the importance of the parameters λ—they allow us
to control averages and ensure the solvability of the cohomology equations.

To implement these conditions, we adopt the simplest, approximate method: we simply
ignore the third condition above! Even though this assumption is not generally true for an
approximate conjugacy, we observe numerically that it does not prevent the convergence of the
method; indeed when h → 0, so does the error induced by this inconsistency; see Figure 3(b)
in section 4. The average of w3 may then be freely chosen. For simplicity, we set it to zero.
At this point, the first and second conditions of (23) can be used as conditions to fix ζ, under
the assumption that ⟨G1⟩ and ⟨G2⟩ are independent. This condition is satisfied for (1), at
least at ε = 0, because then k(θ) = (θ, p), M = I,

(
G1(θ)
G2(θ)

)
= DλΩ(p; δ),

and Ω was assumed to be a diffeomorphism in λ = (δ, p). As we will see in section 4 ignoring
the third solvability condition is not completely benign: it makes the iteration converge slower
than quadratically. It may also be possible to ignore the first or second solvability condition
rather than third—we did not explore this possibility.

The averages of w1 and w2 are arbitrary; these averages add contributions u1(θ)⟨w1⟩ and
u2(θ)⟨w2⟩ to k contributing to a shift along the torus that corresponds to the nonuniqueness
implied by Lemma 1. We set ⟨w1⟩ = ⟨w2⟩ = 0 for simplicity. Even so, ⟨ui(θ)wi(θ)⟩ ̸= 0, so
horizontal shifts still occur.

To conclude our description of the method: once w is found, k and λ are updated by
k → k +M(θ)w(θ) = k + ∆(θ) and λ → λ + ζ. Note that even though we set ⟨w⟩ = 0, the
average of the update, ⟨∆3⟩, may be nonzero, adding a vertical shift to k. Thus to ensure
that p represents the average action, we replace p → p + ⟨∆3⟩ and kz → kz − ⟨∆3⟩. This is a
cosmetic change that simply keeps the interpretation of p fixed.

2.3. Continuation and antialiasing. To obtain good initial guesses for k, we use contin-
uation from the integrable limit ε = 0, where k(θ) = (θ, p) is trivial. Each of cohomology
equations (19)–(21) is solved by using the fast Fourier transform, for N ×N modes, i.e.,

w(θ) =
∑

j1,j2∈(−N
2 ,N2 ]

ŵj1,j2e
2πij·θ.

We typically begin with N = 27 for the first step from ε = 0. Since the number of modes is
finite, and the maps are nonlinear, aliasing errors occur when the spectrum wraps around due
to periodicity in mode number. This error can be ameliorated by application of an antialiasing
filter [Tre00]. We simply set the Fourier modes ŵj = 0 whenever ∥j∥∞ > J = 1

4N for each
solution of the cohomology equations (22).

The iteration is declared successful if the L2-norm of the error (9) reaches the tolerance,
∥e∥2 < 10−12 (using double precision arithmetic); otherwise it is declared to fail if ∥e∥2 > 103

or after ten Newton iterations. Since the functions are represented by finite Fourier series, the
rate of decrease in the error sometimes slows before reaching the desired tolerance. If the error
fails to decrease by at least 5% after two successive iterations, the algorithm exits, rejecting
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the solution. The nondegeneracy condition (15) is checked when the tangent vectors (16) are
computed: the algorithm would fail if ∥u1(θ)× u2(θ)∥ < 10−6, however, this never occurred.

Continuation in ε is performed beginning with an increment ∆ε. The values of (k,λ) at
the integrable ε = 0 limit are used as an initial guess for ε = ∆ε, and linear extrapolation
is then used to predict (k,λ) for ε = 2∆ε. For each successive step, quadratic extrapolation
is employed to estimate (k,λ) for the new torus. This fixed step size and number of modes
is used until the algorithm fails to converge within the specified tolerance. Upon this first
failure, the step size ∆ε is halved and N is doubled. The antialiasing filter is applied directly
to the embedding k(θ) whenever this doubling occurs. At each subsequent failure to converge,
the number of Fourier modes is again doubled and the step size is halved. To limit the
computation time, the doubling of Fourier modes ceases upon reaching an upper limit, which
we typically took to be Nmax = 211. The algorithm also exits when convergence fails at a
minimum specified ∆ε = ∆εmin.

The choice of initial increment ∆ε and threshold ∆εmin depends on both the map being
studied and the performance desired. Smaller choices of these parameters will yield more
accurate results but will increase the runtime. Furthermore, if the tori being studied tend
to be destroyed quickly, then smaller values of these parameters should be used to ensure
accuracy. Conversely, if the tori are relatively robust, larger values may be used to reduce
runtime without affecting accuracy. See section 4 for details.

3. Diophantine rotation vectors. Since the robust tori of standard KAM theory have
Diophantine rotation vectors, it is useful to have a systematic method to select such vectors.
As is well known, each basis of an algebraic field projects to a Diophantine vector; in particular,
when (ω, 1) ∈ R3 is a basis for a cubic algebraic field then ω ∈ D2 [Cas57]. As in [FM13], we
concentrate our initial studies on the cubic field Q(σ) generated by the real root

σ ≈ 1.3247179572447460

of the polynomial x3 − x − 1. This number, called the “spiral mean” by [KO86] and the
“plastic” number by [Ste96], is the smallest cubic PV number: a root of a monic polynomial
with exactly one root outside the unit circle. The vector (σ2,σ, 1) is an integral basis for Q(σ);
consequently any integral basis can be obtained from this vector by application of a matrix
in Gl(3,Z). Our initial investigation focuses on one such basis with

(24) ω = (σ − 1,σ2 − 1)

in the unit square. We also used this extensively in [FM13].
For each incommensurate ω ∈ R2, the binary generalized Farey tree of [KO86] gives a

sequence of rational approximations

(25) ωℓ =
mℓ

nℓ
, (mℓ, nℓ) ∈ Z2 × N,

where ωℓ → ω as ℓ → ∞. The rotation vector (24) corresponds to the infinite binary path
llr̄ on this tree, where l and r denote the symbols for “left” and “right” turns on the tree,
respectively. For the vector (24), this sequence is (mℓ, nℓ) = (nℓ−1, nℓ+2, nℓ+3), where the
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periods satisfy the three-step recursion relation

nℓ+3 = nℓ+1 + nℓ, n0 = 0, n1 = n2 = 1.

These periods grow at the rate nℓ ∼ σℓ, and the approximations (25) converge to ω as
ωℓ − ω ∼ σ−3ℓ/2.

The rotation vector (24) corresponds to the Farey path llrrrr . . . = llr̄, consisting of two
left turns followed by infinitely many rights. In section 5 we will investigate a number of
invariant tori with rotation vectors in Q(σ); they all will have paths with an infinite tail of
r’s. For more details, see [FM13].

4. Examples. As a first application, we compute tori for the “standard volume-preserving”
map

(26)
x′ = x+ Ω(z′; δ),

z′ = z − εg(x),

with the quadratic frequency map

(27) Ω(z; δ) = (z + γ,βz2 − δ),

which is a special case of (1). This map, derived in [DM12], models the local behavior near
any rank-one resonance for three-dimensional volume-preserving dynamics. We use δ as a
distinguished parameter in (27); in particular note that for any β and γ, the frequency map
Ω : R2 → R2 is a diffeomorphism so the nondegeneracy condition is satisfied. For each δ, the
image of Ω is a parabola with a vertical intercept controlled by δ. As noted in section 2, we
also use the average action (6) as a parameter. Thus for (26), λ = (δ, p). Following previous
studies [FM13, Mei12], we let

(28) g(x) = a sin(2πx1) + b sin(2πx2) + c sin(2π(x1 − x2))

be the force and choose a standard set of parameters

(29) a = b = c = 1, β = 2, γ = 1
2 (
√
5− 1).

With these choices, (26) is an analytic diffeomorphism. Since g is odd, it is also reversible, a
fact that we exploited in [FM13] to compute periodic orbits and implement a generalization of
Greene’s residue criterion. There we determined the parameters at which an invariant torus is
destroyed by computing the stability of a sequence of periodic orbits whose rotation numbers
satisfy (25). Here we compare these computations with those of the conjugacy k(θ).

Note that when ε = 0 the rotational torus k(θ) = (θ, p) exists when Ω(p; δ) = ω, or
equivalently, using the rotation vector (24), for the choice of parameters

p = σ − 1− γ, δ = βp2 + 1− σ2.

Using this as the initial guess, we first increment ε by ∆ε = 0.001 and apply the iterative
method as discussed in section 2.3. The resulting computations for 27 × 27 Fourier modes
converge to within ∥e∥2 = 1.1 × 10−15 upon four Newton steps, requiring only three seconds
on a laptop with a 2.4 GHz Intel Core i5 and 4 Gb of memory. The convergence is equally
rapid as ε is incremented; for example, after ten increments, when ε = 0.01, the algorithm
converged within ∥e∥2 = 5.6 × 10−13 upon three iterations; the resulting embedded torus is
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(a) (b)

Figure 2. The embedded invariant torus for the standard volume-preserving map (26) with rotation
vector (σ − 1,σ2 − 1) at (a) ε = 0.01 and (b) ε = 0.02545. Here (δ, p) = (−0.58269,−0.29331), and
(−0.58201,−0.29330), respectively. The points correspond to a uniform grid of 50 points for each angle.

shown in Figure 2(a). Fewer iterations are needed in this case because extrapolation provides
a more accurate initial guess for the embedding. The algorithm first fails to converge within
the specified tolerance when ε = 0.018, triggering a decrease in ∆ε to 5×10−4, and an increase
in the number of Fourier modes to 28 × 28. A second failure occurs at ε = 0.02250, leading to
a further increase in the number of Fourier modes and reduction in ∆ε. The algorithm exited
when ∆ε < ∆εmin = 10−6.

Although our algorithm is based on Newton’s method, we observe that its convergence
is not quadratic. Nevertheless, the convergence appears to be superlinear, as shown in Fig-
ure 3(a): the error after j iterations decreases as

(30) ∥ej∥2 ∼ cm
j

with c < 1 and an exponent m ≈ 1.4. The exponent m decreases slightly with ε independent
of the number of modes used, implying that aliasing has little effect on the convergence rate.
This subquadratic convergence is not unexpected. Ignoring the solvability condition in (21)
causes an O(e) error in the iteration. Indeed, the Newton method converges to the torus at
nearly the same rate that the neglected solvability condition for w3 converges to zero, shown
in Figure 3(b). As a test, we also implemented the full six-dimensional system needed to
solve (19)–(21) and impose the condition ⟨M(θ)w(θ)⟩ = 0. Although more algorithmically
cumbersome, the convergence was significantly more rapid, as shown in Figure 3(a), with
exponent m ≈ 1.6 in (30). However, application of the 6× 6 system did not improve the final
accuracy or the ability to compute tori for larger ε. Hence, below, we will use the numerically
simpler, 2× 2 approximate solvability condition.

The performance of the algorithm for the rotation vector (24) and different maximum
values of Fourier modes, Nmax, was tested on a single node of the Janus supercomputer.
Each node employs 24 GB of memory and contains two hex-core 2.8 GHz Intel Westmere
processors. The results are summarized in Table 1. As expected, when N doubles the total
memory required increases by a factor of four. The total runtime for larger Nmax does not
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(a) (b)

Figure 3. Errors in the computation of the spiral mean torus for (26) as a function of the Newton iterate,
using the integrable torus as the initial guess, on a log | log()| scale. Note that the actual errors range from

10−100.2 ≈ 0.026 to 10−101.2 ≈ 1.4(10)−16. (a) The L2 error in the conjugacy (9) for the values of ε and
technique indicated. (b) Magnitude of the neglected solvability coefficient, ⟨h3 + G3ζ⟩, for the 2× 2 solvability
method; recall (21). Since this error goes to zero, the solvability condition is asymptotically satisfied.

Table 1
Performance data for the computation of the torus with spiral mean rotation number (24) in the standard

volume preserving map (26). The estimates of εcr are derived using the singular value method; see section 5.2.
The numbers in parentheses indicate the estimated error in the least significant digit of εcr. Greene’s residue
criterion (see [FM13]) estimates εcr to be 0.02580(1).

Nmax εmax εcr Time (min) Memory (MB) ∥kx∥2

29 0.0242 0.0253507(6) 2.55 239 1.017 × 106

210 0.0250 0.0259(1) 10.05 1,043 9.132 × 106

211 0.02545 0.02581(2) 45.47 4,165 9.005 × 107

212 0.02547 0.02581(3) 104.73 16,653 3.780 × 108

increase as fast since most of the iterations are still done with smaller values of N . Ultimately
there was little difference in performance between Nmax = 211 and Nmax = 212 (see section 5.2
for further details), so we will use Nmax = 211 throughout this paper unless otherwise noted.

The algorithm converges to the specified accuracy ∥e∥2 < 10−12 for each ε up to εmax;
this last torus is shown in Figure 2(b) when Nmax = 211. These ε values are smaller than the
critical value εcr = 0.0258 that we previously computed using Greene’s criterion [FM13]. The
Sobolev seminorm of the embedding,

||k||2 =
∑

j∈(−N
2 ,N2 ]2

(2π||j||2)2||k̂j ||22,

appears to approach infinity as the torus nears destruction. The growth of this norm, shown for
the x component of k in Table 1, provides further evidence that the tori we computed are near
critical. For more general rotation numbers and maps, we observe that the algorithm typically
converges for ε values within 5% of the previously computed εcr when Nmax = 211. However,
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(a) (b)

Figure 4. Fourier spectrum of kx for the spiral mean torus at (a) ε = 0.01 for N = 27 and (b) ε = 0.02545
for N = 211. The x and y axes indicate the first and second mode number, respectively, of the Fourier series. In
each case the antialiasing filter is indicated by the black box: all modes outside the box are zeroed upon inversion
of the cohomology operator for w.

in a few cases (where the singular values of the conjugacy grow rapidly; see section 5.2) the
algorithm stopped when ε was 10–12% below εcr. The main difficulty in getting closer to
εcr is that the width of the spectrum of the conjugacy grows with ε; see Figure 4. Initially,
when the torus is far from criticality, such as in panel (a), no Fourier modes with significant
amplitude fall within the region subject to antialiasing—the area outside the black square.
However, for ε = 0.02545, shown in panel (b) of the figure, significant modes do lie in this
region and even extend to the maximum mode number. This leads to larger error.

As a validation of the new method, we compared these computations with those in
[FM13] that used periodic orbits to approximate the torus. We computed the sequence
Onℓ = {(xt, zt) | 0 ≤ t < nℓ)} of period nℓ orbits for nℓ = 1, . . . , 7739, with rotation numbers
(25) and with the symmetry x0 = 0. To compare On to the computed embedding, we first
used a root finder to determine an angle θt for which the horizontal distance |xt − kx(θt)| = 0
for each t ∈ [0, n). The average vertical distance

(31) d(n) =
1

n

n−1∑

t=0

|zt − kz(θt)|

then provides a measure of the closeness of these orbits; see Figure 5. The bounding line
in the figure shows that d(n) decreases geometrically with an upper bound n−1.5. Since this
exponent is the same as that for the convergence of ωℓ to ω (recall section 3), this provides
strong numerical evidence that the limiting torus computed by the two methods is identical.
A second measure of the closeness of the orbits comes from the parameter δ. The values, δℓ,
for the periodic orbits converge to the δ value computed using the Fourier method at the same
rate and agree to the same accuracy as the average vertical distance. Finally, (27) implies that
the average action p of the torus is ω1 − γ = σ − 1− γ, which the Fourier method accurately
computes to 16 digits.
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Figure 5. The mean vertical distance (31) between the period-nℓ approximating periodic orbits up to n32 =
7739 (recall section 3), and the invariant torus with rotation vector (24) for ε = 0.01 (recall Figure 2). The
line shown is d = n−1.5.

Since the map (26) is reversible, we expect the conjugacy to satisfy certain symmetry
conditions; see [FM14, App. D]. In particular, the conjugacy for the angles kx(θ) must be odd
about the point ϕ = −⟨kx − θ⟩ while the conjugacy of the action kz(θ) must be even about
ϕ+ 1

2ω. These symmetries lead to requirements on the Fourier modes of the conjugacies (see
[FM14, (42)]) that provide an additional measure of the accuracy of the Fourier method). For
the (σ−1,σ2−1) torus at ε = 0.01 we find ϕ = (1.11,−1.44)×10−6 and the identities hold up
to an L∞ error of less than 3× 10−12 for each component, comparable to the overall accuracy
of the computation of k.

As a second test of the Fourier method, we now consider the oft-studied ABC map,

(32)

x′ = x+ A
2π sin(2πz) + C

2π cos(2πy),

y′ = y + B
2π sin(2πx′) + A

2π cos(2πz),

z′ = z + C
2π sin(2πy′) + B

2π cos(2πx′).

This map is an analytic, volume-preserving diffeomorphism on T3 for each A,B,C ∈ R [FO88a,
FO88b, FP88, MW99]. It can be thought of as a leapfrog (note the x′ and y′ on the right-hand
side of (32)) Euler integrator for the Arnold–Beltrami–Childress flow [DFG+86].

The map (32) is a near-integrable map of the form (1) if, for example, C = ε and B = B(ε)
with B(0) = 0. Since the invariant tori of (32) have constant z = p when ε = 0, we think of
z as an actionlike variable, and of x and y as angles. For this case the frequency map is

(33) Ω(z;A) = A
2π (sin(2πz), cos(2πz)).

We treat A as an essential parameter, similar to δ in (26), so that Ω : S1 × (0,∞) → R2 \ {0}
is a diffeomorphism. As before we use p = ⟨kz⟩ as the second parameter, setting λ = (A, p).
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(a) (b)

Figure 6. Invariant tori with rotation vector (24) for the ABC map (32): (a) B = ε2 at ε = 0.02, and
A = 5.1640; (b) with B = 2ε at ε = 0.01 and A = 5.1638. The points represent a uniform grid of 50 points for
each θ.

Here we consider two cases for B(ε): B = ε2 and B = 2ε. When B = ε2 ≪ ε the
dynamics of y and z essentially decouple from that of x, and the variation of the torus in the
x-direction is very small. The spiral mean torus, with ω given by (24), is shown for this case
at ε = 0.02 in Figure 6(a). However, when B ∼ ε, such as in Figure 6(b), where B = 2ε with
ε = 0.01, the torus deforms along all dimensions. In both cases, the quasi-Newton scheme
converges superlinearly, as it did for the standard volume-preserving map. When B = ε2 we
set ∆ε = 0.005 and when B = 2ε, ∆ε = 0.0025. In both cases, ∆εmin = 0.001∆ε.

5. Detecting critical tori. The breakup of tori in volume-preserving maps is far less
understood than the breakup of invariant circles in two-dimensional twist maps. In particular,
neither Aubry–Mather nor anti-integrability theory have been generalized to nonsymplectic,
volume-preserving systems to prove the existence of remnant tori.2 Since a codimension-one
invariant torus is a barrier to transport, one implication of the destruction of a torus is the
existence of crossing orbits [Mei12]. In our previous study, we observed that the period-nℓ

orbits of (26) for large level ℓ, lose stability at what appears to be the same parameter, ε = εcr,
from which these crossing orbits are born [FM13]. For ε > εcr the periodic orbits persist,
however, they are increasingly unstable and difficult to compute. The density approximated
by these periodic orbits becomes highly nonuniform and they appear to approximate a remnant
torus analogous to the cantorus of area-preserving twist maps. We do not know, however, the
topology of these remnants—if they indeed exist. It seems plausible that there are remnants
that correspond to tori with one or more deleted orbits of open disks: topologically they would
be Sierpinski curves.

In this section we show that the formation of holes is also suggested by our computations of
the conjugacy of subcritical tori. We visualize the local stretching on the torus by computing
the singular values of the 3 × 2 matrix Dk(θ). The squared, largest singular value of Dk(θ),

2Anti-integrable theory has been used to show the existence of nontrivial invariant sets for some third-order
difference equations [JLM08].
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(a) (b)

Figure 7. Singular values for the near-critical torus with ω = 1
5 (−3σ2 + 4σ + 1,−σ2 + 3σ +2) (Farey path

llrrlr), of the standard volume-preserving map (26). The color scale is log S(θ), the maximum value of S is
indicated by the black plus, the images and preimages of this maximum are indicated by the black dots, and
the peak of the symmetric spire is indicated with the black star. (a) The torus at ε = 0.0168125. The maxima
of S occur at θm = (0.6221, 0.5322) and (1, 1) − θm. (b) A magnification of the second spire. The white star
indicates the peak while the white dot is an iterate of the peak of the largest spire

i.e., the largest eigenvalue of

(34) (DkTDk)ij = ui · uj

(recall (16)), is denoted S(θ). When the torus is smooth, S(θ) is finite, but as the torus begins
to tear apart, the singular values at some θ values appear to grow indefinitely.

Rapid growth of the largest singular value signals the destruction of the torus. We demon-
strate in this section how the blowup of singular values, a proxy for the loss of smoothness
of the conjugacy, can be used to estimate εcr. This method is similar to the Sobolev norm
methods of [CdlL10a, CdlL10b, FM14].

5.1. Near-critical conjugacies. The breakup of tori in the standard volume-preserving
map appears to follow a pattern similar to that for circles in area-preserving twist maps
[FM14]. For the latter, breakup corresponds to the formation of one or more gaps at some
point on the circle. Incipient gaps correspond to spikes in the derivative Dk. The images of
these largest gaps form a bi-infinite family upon iteration forward and backward in time; each
such family is called a “hole.”

For two-tori, however, there are interesting variations in the geometry and location of
regions where S(θ) is large. One example for the standard volume preserving map (26) is
shown in Figure 7. For this case the spikes in S(θ) are localized to patches, which we refer to
as spires. These always seem to occur in symmetric pairs about θ = (12 ,

1
2), due to the reversing

symmetry of the map. In every observed torus, the spires correspond to a single hole, i.e., the
orbit of the position of the maximum of S lies at the center of all of the spires. For example
the two symmetric maxima in Figure 7(a) are six iterates apart and the remaining, smaller
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(a) (b)

Figure 8. Singular value S(θ) for the torus with ω = (2σ2 − σ − 2,σ2 − σ) (Farey path llrlr), in the
standard volume-preserving map (26). The color scale is log S(θ), the maximum value of S is indicated by the
black plus, and images and preimages of the maximum are indicated by the black dots. (a) For ε = 0.009 there
is a dominant streak aligned with the rotation vector ω (white line). (b) For ε = 0.0099375, the main streak
has broken up and is no longer aligned with ω. Several other smaller streaks have formed, each is centered on
an image of the location of the maximum singular value.

peaks lie on the same orbit. Although the orbit of the maximum of S does not land exactly
on the peak of the symmetric spire (see Figure 7(b)), this is almost certainly due to sampling
issues. Indeed, as Nmax was increased the distance between these points declined. In some
cases the largest spires are separated by many iterates. For example, when the rotation vector
has the Farey path llrrrlr, the symmetric spires are separated by 47 iterations.

The peaks in the singular values more commonly develop into elongated patches that we
call streaks. These may be due to the merging of symmetric spires such as those seen in
Figure 7. The torus in Figure 8(a) exhibits a dominant streak about the maximal singular
value that is aligned with the rotation vector ω; we have, however, observed other alignments.
As this torus approaches criticality its main streak breaks apart, forming smaller streaks whose
centers lie along the orbit of the primary peak; see Figure 8(b).

To understand the breakup of tori in the ABC map (32) we must first recognize that
the dynamics are significantly altered whenever B ≡ 0. In this case the y and z dimensions
are completely decoupled from the angle x, hence the dynamics of the map are essentially
two dimensional with a quasi-periodically forced third dimension; recall Figure 6(a). The
two-dimensional map in angle y and action z is area preserving, and its inverse,

(35) f−1
yz (y, z) =

(
y − A

2π cos(2πz′), z − C
2π sin(2πy)

)
,

can be analyzed with anti-integrability theory for fixed A, e.g., [Aub95]. In this case (35) has
the potential Vyz(y) =

C
4π2 cos(2πy), and the theory predicts that the largest gap forms around

the maximum at y = 0, and this is what is observed; see Figure 9(a). Similarly, when C = 0
(not shown) the main streak forms along the maximum of the potential Vxz(x) =

B
4π2 sin(2πx)
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(a) (b)

Figure 9. (a) Logarithm of S(θ) for the spiral mean (Farey path llr̄) torus of the ABC map with C =
0.2040625 and B = 0. The main streak forms near the line θ2 = 0. (b) The same torus with C = ε = 0.1475
and B = ε2. Iterates of the location of the maximum are indicated by black dots.

for the area-preserving map for (x, z), that is, along x = 1
4 . These patterns continue to hold

when B is either asymptotically smaller or larger than C. For example, when B = ε2 ≪ C, a
streak forms along the line x = 0, similarly to the B = 0 torus; see Figure 9(b). As ε grows,
the perturbation in the y direction increases, and this streak deforms. Additional streaks also
form along the orbit of the main streak.

When B = O(C) there is no consistent pattern to the breakup of the tori. In some cases we
see streaks form near x = 1

4 or y = 0, while in others spires appear to arise at the intersection
of the maxima and minima of the potentials Vyz(y) and Vxz(x); see Figure 10.

5.2. The singular value method. A family of volume-preserving maps (1) fλ,ε has a
curve fλ(ε),ε along which an invariant torus with Diophantine rotation vector ω exists for all
ε ∈ [0, εcr(ω)]. To estimate εcr we use the blowup of the squared singular value S(θ). Indeed,
we observe that as ε → εcr

(36) ∥S(θ)∥∞ ∼ κ

(εcr − ε)β
;

see Figure 11. This fit works for both of the maps that we studied as well as for tori with a
variety of rotation vectors. However, the exponent β varies with the map, as can be seen in
the figure, as well as the rotation vector, as we will show below.

We used the last ten steps of the continuation in ε to estimate the parameters εcr, β, and
κ in (36) using the built-in nonlinear least squares algorithm of MATLAB. We obtained a
rough estimate of the error in εcr from the penultimate ten continuation steps; however, this
variation in the estimate of εcr appears to often underestimate the true error. We call this
technique the “singular value method” for computing εcr.

The results of the singular value method for the spiral mean torus with ω = (σ−1,σ2−1)
were shown in Table 1. The estimate of εcr converges as Nmax is increased—indeed, there is
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(a) (b)

Figure 10. Logarithm of S(θ) for tori of the ABC map with C = ε and B = 2ε. (a) The near-critical torus
with ω = 1

7 (5σ
2 − 3σ + 1, 6σ2 − 5σ − 3) (Farey path rrllrlr) at ε = 0.018125. The main spire has formed near

θ = (0.75, 0), the intersection of the maximum of Vyz and the minimum of Vxz. (b) The near-critical llrrlr
torus at ε = 0.0325. The main spire has formed near θ = (0.25, 0.5), the intersection of the minimum of Vyz

and the maximum of Vxz.

Figure 11. Blowup of S for the ω = (σ− 1, σ2 − 1) invariant torus for three volume-preserving maps. The
bottom (blue) curve corresponds to the standard volume-preserving map. The upper and middle curves are for
the ABC map (32). The middle (red) curve is for B = 2ε and the top (green) is for B = ε2. The horizontal
scale is based on the best estimate of εcr from (36).
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Table 2
Estimates of εcr for tori of (26) with 16 different rotation vectors in Q(σ) determined by the Farey paths in

column two. The third and forth columns give εcr(ω) computed by the residue method (using orbits up to period
100,000) and the Fourier method from the singular value fit (36), respectively. The numbers in parentheses
indicate the estimated error in the least significant digit of εcr. The last column is the fit to β from (36).

ω Farey Path εRcr(ω) εscr(ω) β

(0.3247,0.7549) llr 0.0258(1) 0.02581(2) 0.36
(0.5278,0.8286) llrrrlr 0.03226(8) 0.0321(1) 0.40
(0.2068,0.8439) llrrlr 0.01741(2) 0.01728(2) 0.38
(0.1054,0.6753) llrrllr 0.01255(3) 0.012324(5) 0.54
(0.1850,0.4302) llrlr 0.01242(1) 0.01195164(3) 0.49
(0.1294,0.3008) llrlrlr 0.00671(4) 0.0067(4) 1.06
(0.4809,0.6370) llrllr 0.02141(4) 0.0220(1) 0.61
(0.2451,0.5698) llrlllr 0.01754(2) 0.01750(3) 0.46
(0.5698,0.3247) rrlr 0.03642(5) 0.03638(3) 0.43
(0.6992,0.5278) rrlrrlr 0.03404(6) 0.03367(2) 0.42
(0.3630,0.2068) rrlrlr 0.01051(3) 0.01017(3) 0.54
(0.4302,0.1054) rrlrllr 0.013420(6) 0.01275(8) 0.57
(0.7549,0.1850) rrllr 0.027469(6) 0.02742(6) 0.85
(0.8286,0.1294) rrllrlr 0.01323(2) 0.0128(3) 0.77
(0.8439,0.4809) rrlllr 0.02682(9) 0.02630(6) 0.66
(0.6753,0.2451) rrllllr 0.03527(2) 0.03503(6) 0.69

no significant change in the estimate between Nmax = 211 and Nmax = 212. We also note that
the error estimate for Nmax = 29 is certainly too small.

The results from the singular value method can be compared to those we obtained using
Greene’s residue criterion for (26) from [FM13]. To do this, we generated sixteen rotation
vectors in Q(σ) by adding an infinite tail of r symbols to the binary sequences of rational
vectors from level 6 of the generalized Farey tree, restricted to the unit square; recall section 3.
The critical ε values for the corresponding tori were estimated using both the singular value
method and Greene’s criterion for orbits up to period 100,000 with a threshold residue Rth =
5.0. The reasonable agreement between these results, shown in Table 2, provides numerical
evidence for the validity of both methods, although the error estimates generally appear too
small in both cases.

Similar results for the tori with the same sixteen rotation vectors for the ABC map (32)
are summarized in Table 3. Since this map is not reversible, we cannot compare these results
with Greene’s residue criterion. The estimated errors in the fits to (36) are of similar orders
of magnitude as that found in Table 2, though as before, this is likely an underestimate of
the true error. We also found that the critical parameter for the llr̄ torus of the ABC map
varies smoothly with the parameter B. For example, Figure 12 shows εcr as a function of b,
where B = bε. As b grows the perturbation to the system increases, and, as expected, the
torus becomes increasingly fragile.

6. Conclusions. In this paper we applied a Fourier-based, quasi-Newton algorithm to
efficiently and accurately compute the conjugacy for rotational tori in volume-preserving maps
with two angles and one action. When the map is reversible, the tori we found satisfy the
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Table 3
Estimates of εcr for tori of (32) with 16 different rotation vectors in Q(σ). The third and fifth columns give

εcr(ω) computed by the singular value method for B = 2ε and B = ε2, respectively. The numbers in parentheses
indicate the estimated error in the least significant digit of εcr. The fourth and sixth columns give the fit to β
from (36).

B = 2ε B = ε2

ω Farey Path εcr(ω) β εcr(ω) β

(0.3247,0.7549) llr 0.04079(7) 0.65 0.15783(9) 0.63
(0.5278,0.8286) llrrrlr 0.0332(1) 0.40 0.1146(4) 0.47
(0.2068,0.8439) llrrlr 0.0380(3) 0.86 0.142(3) 0.86
(0.1054,0.6753) llrrllr 0.0239(1) 0.52 0.153(1) 0.56
(0.1850,0.4302) llrlr 0.0693(1) 0.36 0.2876(2) 0.30
(0.1294,0.3008) llrlrlr 0.0655(2) 0.45 0.2701(6) 0.59
(0.4809,0.6370) llrllr 0.0396(7) 0.69 0.1815(2) 0.60
(0.2451,0.5698) llrlllr 0.06237(5) 0.49 0.23586(1) 0.61
(0.5698,0.3247) rrlr 0.08315(5) 0.47 0.1254(5) 0.99
(0.6992,0.5278) rrlrrlr 0.049562(4) 0.39 0.09613(9) 0.68
(0.3630,0.2068) rrlrlr 0.10383(4) 0.43 0.1863(8) 0.52
(0.4302,0.1054) rrlrllr 0.0654(5) 0.46 0.1248(3) 0.70
(0.7549,0.1850) rrllr 0.0389(2) 0.54 0.1000(1) 0.25
(0.8286,0.1294) rrllrlr 0.0190(6) 0.57 0.0582(6) 0.29
(0.8439,0.4809) rrlllr 0.0382(1) 0.43 0.0618(7) 0.65
(0.6753,0.2451) rrllllr 0.0659(1) 0.33 0.1134(4) 0.57

Figure 12. Estimate of εcr as a function of b for the llr torus in the ABC map (32) with B = bε, computed
by the singular value method.

expected symmetry properties and are the limits of sequences of symmetric periodic orbits
like those we found in [FM13]. The Fourier method, however, also applies to nonreversible
maps and, as an example, we showed that it can be used to compute tori for the ABC map.
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Reasonably accurate estimates (4–5 significant figures) for the parameters at which a torus
is critical were obtained under the hypothesis that the local singular values of the derivative
of the conjugacy blow up as a power-law at criticality. The computations of εcr, however,
are unfortunately not as accurate as those obtained using Greene’s residue method for area-
preserving maps. Part of the reason for this is probably intrinsic to the number theory of the
spiral mean and of Diophantine vectors more generally, which are not as regular as the noble
numbers that give the most robust invariant circles in the area-preserving case. It is not clear
to us how to make significant progress on this problem.

The patterns of peaks of the local singular values of the conjugacy show local distortions
in the torus that eventually should be responsible for tearing it apart. Examination of these
near-critical conjugacies may give further insight into the destruction of tori, and may provide
insight into the topological structure of invariant sets that replace the tori when ε > εcr, if any
such sets exist. Barring a generalization of Aubry–Mather theory to the volume-preserving
case—which seems difficult since we know of no variational formulation for these maps—it
would be nice to develop an anti-integrable theory for maps on T2 × R that could show the
existence of invariant sets analogous to cantori.

Finally, it would be interesting to extend this method to compute nonrotational tori, as
well as tori for incompressible flows and higher-dimensional, volume-preserving maps.
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